网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于正交实验的TC4钛合金连杆锻造工艺参数影响研究
英文标题:Study on influence of forging process parameters for TC4 titanium alloy connecting rod based on orthogonal test
作者:邓伟1 何葛豪1 贾德文1 冀会平2 管方楞2 崔志中2 
单位:1.昆明理工大学 2.云南西仪工业股份有限公司 
关键词:TC4钛合金 连杆 热锻 单位体积能耗 正交实验 
分类号:TG316
出版年,卷(期):页码:2023,48(8):1-10
摘要:

 为了实现连杆热锻过程的绿色设计,针对TC4钛合金连杆的热锻过程的单位体积能耗,采用有限元软件Deform3D构建连杆的有限元模型,运用正交实验方案探究了锻坯初始温度、锻造速度、压扁量、摩擦因数4个工艺参数对单位体积能耗的影响。通过极差分析得到了各因素对单位体积能耗的影响程度:摩擦因数对单位体积能耗的影响程度最大,其次为锻坯初始温度和锻造速度,压扁量对单位体积能耗的影响最小;确定了优选方案工艺参数组合为:锻坯初始温度为1010 ℃、锻造速度为550 mm·s-1、摩擦因数为0.1、压扁量为10 mm。在优选后的工艺参数条件下进行了连杆样品锻造,单位体积能耗由原来的418.54 J·mm-3下降至288.17 J·mm-3,降幅达31.15%。TC4钛合金连杆热锻样品的金属填充正常,无锻造缺陷,实现了绿色制造。

In order to realize the green design of hot forging process for connecting rod, for the energy consumption per unit volume of the hot forging process for TC4 titanium alloy connecting rod, the finite element model of connecting rod was constructed by the finite element software Deform-3D, and the influences of four process parameters such as initial temperature of forging billet, forging speed, flattening amount and friction factor on the energy consumption per unit volume were investigated by the orthogonal test. Then, the influence degree of each factor on the energy consumption per unit volume was obtained by the range analysis. And the friction factor has the greatest influence on the energy consumption per unit volume, followed by the initial temperature of forging billet and forging speed, and the flattening amount has the least influence on the energy consumption per unit volume. Furthermore, the optimal combination of process parameters is determined as the initial temperature of forging billet  of 1010 ℃, the forging speed of 550 mm·s-1, the friction factor of 0.1, and the flattening amount of 10 mm. Finally, the forging of connecting rod sample was carried out under the optimized process parameters. The results show that the energy consumption per unit volume decreases from 418.54 J·mm-3 to 288.17 J·mm-3, which has a decrease of 31.15%, and the metal filling of the hot forging sample for TC4 titanium alloy connecting rod is normal, without forging defects, which realizes green manufacturing.

基金项目:
云南省科技厅重大科技专项计划(202202AC080006)
作者简介:
作者简介:邓伟(1976-),男,学士,教授级高工,硕士生导师,E-mail:1323364897@qq.com;通信作者:贾德文(1977-),男,博士,副教授,E-mail:27546658@qq.com
参考文献:

[1]朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34(4): 44-50.


Zhu Z S. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials, 2014, 34(4): 44-50.

[2]郭鲤, 何伟霞, 周鹏, 等. 我国钛及钛合金产品的研究现状及发展前景[J]. 热加工工艺, 2020, 49(22): 22-28.

Guo L, He W X, Zhou P, et al. Research status and development prospect of titanium and titanium alloy products in China[J]. Hot Working Technology, 2020, 49(22): 22-28.

[3]Ingarao G, Ambrogio G, Gagliardi F, et al. A sustainability point of view on sheet metal forming operations: Material wasting and energy consumption in incremental forming and stamping processes[J]. Journal of Cleaner Production, 2012, 29-30: 255-268.

[4]高梦迪, 刘志峰, 李磊. 金属薄板热冲压成形能耗分析[J]. 塑性工程学报, 2017, 24(5): 74-81.

Gao M D, Liu Z F, Li L. Energy consumption analysis focusing on hot stamping of sheet metal[J]. Journal of Plasticity Engineering, 2017, 24(5): 74-81.

[5]Torres S, Calder'on E, Ortega R, et al. Sustainability in terms of energy consumption in processes of incremental forming and stamping[J]. Materials Today: Proceedings, 2022, 49(1): 175-180.

[6]Gao M D, Huang H H, Li X Y, et al. Carbon emission analysis and reduction for stamping process chain[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1): 667-678.

[7]王家毅, 米振莉, 李辉, 等. 基于热加工图 6082 铝合金锻造工艺优化及强化机制研究[J]. 稀有金属, 2019, (2): 113-121.

Wang J Y, Mi Z L, Li H, et al. Isothermal forging process and strengthening mechanism of 6082 aluminum alloy through processing map[J]. Chinese Journal of Rare Metals, 2019,(2): 113-121.

[8]闫迎亮, 张鹏飞. TC4钛合金绝热剪切行为的数值模拟[J]. 机械工程材料, 2020, 44(10):76-80,86.

Yan Y L, Zhang P F. Numerical simulation of adiabatic shear behavior of TC4 titanium alloy[J]. Materials for Mechanical Engineering,2020, 44(10):76-80, 86.

[9]Gao J Z, Zhao S D, Gao J J, et al. A novel telescoping mechanism integrating spline sliding and worm drive: An energy-saving and high-efficient solution for the clutch of mechanical press[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(9): 1-16.

[10]Gao M D, Wang Q Y, Li L, et al. Energy-economizing optimization of magnesium alloy hot stamping process[J]. Processes, 2020, 8(2): 186.

[11]Park H S, Nguyen T T, Dang X P. Energy-efficient optimization of forging process considering the manufacturing history[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(2): 147-154.

[12]高帅, 赵俊生, 李志伟, 等. 基于 Simufact 的强力热旋压连杆衬套成形精度研究[J]. 塑性工程学报, 2021, 27(10): 40-47.

Gao S, Zhao J S, Li Z W, et al. Study on forming accuracy of hot power spinning connecting rod bushing based on Simufact[J]. Journal of Plasticity Engineering, 2021, 27(10): 40-47.

[13]郭芳, 原霞, 吉梦雯, 等. 基于二次回归正交试验的连杆衬套成形质量分析[J]. 塑性工程学报, 2019, 25(5): 153-157.

Guo F, Yuan X, Ji M W, et al. Forming quality analysis of connecting rod bushing based on quadratic regression orthogonal test[J]. Journal of Plasticity Engineering, 2019, 25(5): 153-157.

[14]叶勇, 王金彦. 钛合金的应用现状及加工技术发展概况[J]. 材料导报, 2012, 26(2): 360-363.

Ye Y,Wang J Y. An overview on application status and processing technology development of titanium alloy[J]. Materials Review, 2012, 26(2): 360-363.

[15]张一帆, 朱晓飞, 周舸, 等. A100钢的热变形行为及加工图[J]. 精密成形工程, 2022, 14(2):88-94.

Zhang Y F, Zhu X F, Zhou K, et al. Hot deformation behavior and processing map of A100 steel[J]. Journal of Netshape Forming Engineering,2022, 14(2):88-94.

[16]Luo J, Li M Q, Li H, et al. Effect of the strain on the deformation behavior of isothermally compressed Ti-6Al-4V alloy[J]. Materials Science and Engineering: A, 2009, 505(1-2): 88-95.

[17]罗石元. 汽轮机 TC4 钛合金大型复杂叶片精密热锻成形基础研究[D]. 武汉: 武汉理工大学, 2017.

Luo S Y. Fundamental Research on Precision Hot Forging of Large Complex TC4 Titanium Alloy Turbine Blade[D]. Wuhan: Wuhan University of Technology, 2017.

[18]张继宏, 程芳萍. “双碳”目标下中国制造业的碳减排责任分配[J]. 中国人口·资源与环境, 2021, 31(9): 64-72.

Zhang J H, Cheng F P. Carbon emission reduction responsibility allocation in China′s manufacturing industry under the targets of carbon peak and carbon neutrality[J]. China Population, Resources and Environment, 2021, 31(9): 64-72.

[19]方华. 基于粒子群算法的等温挤压能耗优化[D]. 广州: 广东工业大学, 2019.

Fang H. Optimization of Isothermal Extrusion Energy Consumption Based on PSO [D]. Guangzhou: Guangdong University of Technology, 2019.

[20]黎宇嘉, 黄兵, 鲁娟, 等. 基于有限元模拟的Ti6Al4V铣削过程参数多目标优化[J]. 中国机械工程, 2021, 32(13): 1555-1561.

Li Y J, Huang B, Lu J, et al. Multi-objective optimization of cutting parameters in Ti6Al4V milling processes based on finite element simulation[J]. China Mechanical Engineering, 2021, 32(13): 1555-1561.

[21]梁敏富, 方新秋, 陈宁宁, 等. 正交试验设计的FBG测力锚杆结构封装优化及应用[J]. 煤炭学报, 2022, 47(8): 2950-2960.

Liang M F, Fang X Q, Chen N N, et al. Structure packaging optimization and application of FBG dynamometry bolts based on the orthogonal test design[J]. Journal of China Coal Society, 2022, 47(8): 2950-2960.

[22]Yang Y, Zhou L, Zhou H T, et al. Optimal design of slit impeller for low specific speed centrifugal pump based on orthogonal test[J]. Journal of Marine Science and Engineering, 2021, 9(2): 121.

[23]孙洁, 蔡建国, 葛新峰, 等. 基于正交试验多目标的两叶片灯泡贯流式水轮机性能优化[J]. 中国电机工程学报, 2022, 42(9): 3317-3327.

Sun J, Cai J G, Ge X F, et al. Performance optimization of bulb tubular turbine with two blades based on multi-objective orthogonal test[J]. Proceedings of the CSEE, 2022, 42(9): 3317-3327.

[24]刘瑞江, 张业旺, 闻崇炜, 等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9): 52-55.

Liu R J, Zhang Y W, Wen C W, et al. Study on the design and analysis methods of orthogonal experiment[J]. Experimental Technology and Management, 2010, 27(9): 52-55.

[25]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

[26]GB/T 23340—2018, 内燃机连杆技术条件[S].

GB/T 23340—2018, Internal combustion engines—Connecting rods—Specification[S].

[27]苗站, 张治民, 于建民, 等. 不同参数对铝合金枝杈类构件金属流线的影响及优化[J]. 锻压技术, 2022, 46(2): 105-110.

Miao Z, Zhang Z M, Yu J M, et al. Influence of different parameters on metal streamline of aluminum alloy part with branch and optimization[J]. Forging & Stamping Technology, 2022, 46(2): 105-110.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9