[1]朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34(4): 44-50.
Zhu Z S. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials, 2014, 34(4): 44-50.
[2]郭鲤, 何伟霞, 周鹏, 等. 我国钛及钛合金产品的研究现状及发展前景[J]. 热加工工艺, 2020, 49(22): 22-28.
Guo L, He W X, Zhou P, et al. Research status and development prospect of titanium and titanium alloy products in China[J]. Hot Working Technology, 2020, 49(22): 22-28.
[3]Ingarao G, Ambrogio G, Gagliardi F, et al. A sustainability point of view on sheet metal forming operations: Material wasting and energy consumption in incremental forming and stamping processes[J]. Journal of Cleaner Production, 2012, 29-30: 255-268.
[4]高梦迪, 刘志峰, 李磊. 金属薄板热冲压成形能耗分析[J]. 塑性工程学报, 2017, 24(5): 74-81.
Gao M D, Liu Z F, Li L. Energy consumption analysis focusing on hot stamping of sheet metal[J]. Journal of Plasticity Engineering, 2017, 24(5): 74-81.
[5]Torres S, Calder'on E, Ortega R, et al. Sustainability in terms of energy consumption in processes of incremental forming and stamping[J]. Materials Today: Proceedings, 2022, 49(1): 175-180.
[6]Gao M D, Huang H H, Li X Y, et al. Carbon emission analysis and reduction for stamping process chain[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1): 667-678.
[7]王家毅, 米振莉, 李辉, 等. 基于热加工图 6082 铝合金锻造工艺优化及强化机制研究[J]. 稀有金属, 2019, (2): 113-121.
Wang J Y, Mi Z L, Li H, et al. Isothermal forging process and strengthening mechanism of 6082 aluminum alloy through processing map[J]. Chinese Journal of Rare Metals, 2019,(2): 113-121.
[8]闫迎亮, 张鹏飞. TC4钛合金绝热剪切行为的数值模拟[J]. 机械工程材料, 2020, 44(10):76-80,86.
Yan Y L, Zhang P F. Numerical simulation of adiabatic shear behavior of TC4 titanium alloy[J]. Materials for Mechanical Engineering,2020, 44(10):76-80, 86.
[9]Gao J Z, Zhao S D, Gao J J, et al. A novel telescoping mechanism integrating spline sliding and worm drive: An energy-saving and high-efficient solution for the clutch of mechanical press[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(9): 1-16.
[10]Gao M D, Wang Q Y, Li L, et al. Energy-economizing optimization of magnesium alloy hot stamping process[J]. Processes, 2020, 8(2): 186.
[11]Park H S, Nguyen T T, Dang X P. Energy-efficient optimization of forging process considering the manufacturing history[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(2): 147-154.
[12]高帅, 赵俊生, 李志伟, 等. 基于 Simufact 的强力热旋压连杆衬套成形精度研究[J]. 塑性工程学报, 2021, 27(10): 40-47.
Gao S, Zhao J S, Li Z W, et al. Study on forming accuracy of hot power spinning connecting rod bushing based on Simufact[J]. Journal of Plasticity Engineering, 2021, 27(10): 40-47.
[13]郭芳, 原霞, 吉梦雯, 等. 基于二次回归正交试验的连杆衬套成形质量分析[J]. 塑性工程学报, 2019, 25(5): 153-157.
Guo F, Yuan X, Ji M W, et al. Forming quality analysis of connecting rod bushing based on quadratic regression orthogonal test[J]. Journal of Plasticity Engineering, 2019, 25(5): 153-157.
[14]叶勇, 王金彦. 钛合金的应用现状及加工技术发展概况[J]. 材料导报, 2012, 26(2): 360-363.
Ye Y,Wang J Y. An overview on application status and processing technology development of titanium alloy[J]. Materials Review, 2012, 26(2): 360-363.
[15]张一帆, 朱晓飞, 周舸, 等. A100钢的热变形行为及加工图[J]. 精密成形工程, 2022, 14(2):88-94.
Zhang Y F, Zhu X F, Zhou K, et al. Hot deformation behavior and processing map of A100 steel[J]. Journal of Netshape Forming Engineering,2022, 14(2):88-94.
[16]Luo J, Li M Q, Li H, et al. Effect of the strain on the deformation behavior of isothermally compressed Ti-6Al-4V alloy[J]. Materials Science and Engineering: A, 2009, 505(1-2): 88-95.
[17]罗石元. 汽轮机 TC4 钛合金大型复杂叶片精密热锻成形基础研究[D]. 武汉: 武汉理工大学, 2017.
Luo S Y. Fundamental Research on Precision Hot Forging of Large Complex TC4 Titanium Alloy Turbine Blade[D]. Wuhan: Wuhan University of Technology, 2017.
[18]张继宏, 程芳萍. “双碳”目标下中国制造业的碳减排责任分配[J]. 中国人口·资源与环境, 2021, 31(9): 64-72.
Zhang J H, Cheng F P. Carbon emission reduction responsibility allocation in China′s manufacturing industry under the targets of carbon peak and carbon neutrality[J]. China Population, Resources and Environment, 2021, 31(9): 64-72.
[19]方华. 基于粒子群算法的等温挤压能耗优化[D]. 广州: 广东工业大学, 2019.
Fang H. Optimization of Isothermal Extrusion Energy Consumption Based on PSO [D]. Guangzhou: Guangdong University of Technology, 2019.
[20]黎宇嘉, 黄兵, 鲁娟, 等. 基于有限元模拟的Ti6Al4V铣削过程参数多目标优化[J]. 中国机械工程, 2021, 32(13): 1555-1561.
Li Y J, Huang B, Lu J, et al. Multi-objective optimization of cutting parameters in Ti6Al4V milling processes based on finite element simulation[J]. China Mechanical Engineering, 2021, 32(13): 1555-1561.
[21]梁敏富, 方新秋, 陈宁宁, 等. 正交试验设计的FBG测力锚杆结构封装优化及应用[J]. 煤炭学报, 2022, 47(8): 2950-2960.
Liang M F, Fang X Q, Chen N N, et al. Structure packaging optimization and application of FBG dynamometry bolts based on the orthogonal test design[J]. Journal of China Coal Society, 2022, 47(8): 2950-2960.
[22]Yang Y, Zhou L, Zhou H T, et al. Optimal design of slit impeller for low specific speed centrifugal pump based on orthogonal test[J]. Journal of Marine Science and Engineering, 2021, 9(2): 121.
[23]孙洁, 蔡建国, 葛新峰, 等. 基于正交试验多目标的两叶片灯泡贯流式水轮机性能优化[J]. 中国电机工程学报, 2022, 42(9): 3317-3327.
Sun J, Cai J G, Ge X F, et al. Performance optimization of bulb tubular turbine with two blades based on multi-objective orthogonal test[J]. Proceedings of the CSEE, 2022, 42(9): 3317-3327.
[24]刘瑞江, 张业旺, 闻崇炜, 等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9): 52-55.
Liu R J, Zhang Y W, Wen C W, et al. Study on the design and analysis methods of orthogonal experiment[J]. Experimental Technology and Management, 2010, 27(9): 52-55.
[25]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[26]GB/T 23340—2018, 内燃机连杆技术条件[S].
GB/T 23340—2018, Internal combustion engines—Connecting rods—Specification[S].
[27]苗站, 张治民, 于建民, 等. 不同参数对铝合金枝杈类构件金属流线的影响及优化[J]. 锻压技术, 2022, 46(2): 105-110.
Miao Z, Zhang Z M, Yu J M, et al. Influence of different parameters on metal streamline of aluminum alloy part with branch and optimization[J]. Forging & Stamping Technology, 2022, 46(2): 105-110.
|