[1]范莉, 于志生, 徐斌, 等. 履带板成形工艺研究进展[J]. 江西建材, 2016,(8): 2.
Fan L, Yu Z S, Xu B, et al. Research progress in forming technology of track shoe[J]. Jiangxi Building Materials, 2016,(8): 2.
[2]张宏志, 武玉平, 周建军,等. 车用高锰钢履带板静压造型工艺研究[J]. 铸造, 2015, 64(10):1036-1038,1041.
Zhang H Z, Wu Y P, Zhou J J, et al. Process development of static molding of high-manganese steel track used for special vehicle[J]. Foundry, 2015, 64(10): 1036-1038,1041.
[3]Du Z M, Qi Y S, Wang C S, et al. Research on forging process for 42CrMo dual-grouser track shoe used in special vehicle[J]. Procedia Manufacturing, 2020, 50: 314-317.
[4]Park W Y,Chang Y C,Lee S S,et al. Prediction of the tractive performance of a flexible tracked vehicle[J]. Journal of Terramechanics, 2007, 45(1-2):13-23.[5]陈利华, 李顺, 李宏伟, 等. 高性能铝合金履带板成形技术研究[J]. 新技术新工艺, 2020,(1):14-19.
Chen L H, Li S, Li H W, et al. Research on forming technology of high-performance aluminum alloy solepate[J]. New Technology & New Process, 2020,(1):14-19.
[6]张敏, 张新东, 张开举,等. 大节距双齿履带板的锻造生产[J]. 锻造与冲压, 2013,(23): 62-63.
Zhang M, Zhang X D, Zhang K J, et al. Forging production of large pitch double tooth track shoes[J]. Forging & Metalforming, 2013,(23): 62-63.
[7]孙兴辰. 推土机履带板锻造全过程工艺设计及质量控制的研究[D].济南:山东大学, 2019.
Sun X C. Research on Forging Process Design and Quality Control of Bulldozer Crawler Plate[D]. Jinan:Shandong University, 2019.
[8]李科锋, 孙晓东, 陈波, 等. 薄壁深长筋履带下板体成形工艺研究[J]. 新技术新工艺, 2016,(9): 86-88.
Li K F, Sun X D, Chen B, et al. Research on thin-walled deep muscle tracks the lower body forming technology[J]. New Technology & New Process, 2016,(9): 86-88.
[9]徐磊. 湿地履带板锻造工艺设计及成形过程数值模拟[D]. 济南:山东大学, 2013.
Xu L. Forging Process and Die Design and the Numerical Simulation of Wetland Creeper Tread[D]. Jinan:Shandong University, 2013.
[10]陈园园, 齐会萍, 李永堂, 等. 锻态42CrMo钢高温变形过程中本构模型修正及激活能演化[J]. 锻压技术, 2021, 46(11): 260-269.
Chen Y Y, Qi H P, Li Y T, et al. Modification of constitutive model and evolution of activation energy for forged 42CrMo steel during high temperature deformation process[J]. Forging & Stamping Technology, 2021, 46(11): 260-269.
[11]陈园园, 李永堂, 庞晓龙, 等. 考虑应变补偿的铸态42CrMo钢本构模型[J]. 锻压技术, 2021, 46(5): 246-252.
Chen Y Y, Li Y T, Pang X L, et al. Constitutive model of as-cast 42CrMo steel based on strain compensation[J]. Forging & Stamping Technology, 2021, 46(5): 246-252.
[12]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.
[13]段海龙. 42CrMo结合齿热锻成形机理及微观组织演变规律研究[D]. 唐山:华北理工大学, 2021.
Duan H L. Study on the Mechanism and Microstructure Evolution of 42CrMo Conjunction Gear During Forging Process[D]. Tangshan:North China University of Science and Technology, 2021.
[14]周琳,刘运玺,陈玮,等.Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图[J].稀有金属,2022,46(1):27-35.
Zhou L, Liu Y X, Chen W, et al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy[J]. Chinese Journal of Rare Metals,2022,46(1):27-35.
|