网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于流变行为和热加工图的全地形车履带板锻造工艺
英文标题:Forging process on all-terrain vehicle track shoe based on rheological behavior and thermal processing map
作者:刘辉1  江莉2  何欢欢1 
单位:1.新疆应用职业技术学院 机电工程系 2. 新疆职业大学 机械电子工程学院 
关键词:热压缩 Arrhenius本构方程 流变行为 热加工图 履带板 
分类号:TG316;TG146.4
出版年,卷(期):页码:2023,48(8):17-24
摘要:

 为得到组织均匀、晶粒度符合要求且无锻造缺陷的某履带板高性能锻件,首先,通过热压缩实验获取了42CrMo钢的流变数据,并构建了Arrhenius本构方程。结果表明:当应变速率为0.01~0.1 s-1、温度高于850 ℃时,材料的真实应力-真实应变曲线存在明显的峰值,软化效应明显,其动态再结晶软化效应显著大于加工硬化效应;当应变速率较高时,材料的应力峰值不明显,软化效果不显著,这说明在高应变速率下,材料来不及完全发生再结晶,其软化机制为动态回复。其次,构建了42CrMo钢在不同变形量下的热加工图,发现42CrMo钢的失稳高风险区主要位于低温、高应变速率区域,也有少量位于高温、低应变速率区域;当对数应变速率小于-2.5、温度为850~1050 ℃时,材料在热加工时具有较高的热加工稳定性。再次,使用数值仿真分析了某履带板的锻造成形过程,得到了成形效果良好,无折叠、欠填充等锻造缺陷的锻件,各方面指标均达到了设计要求。最后,通过生产试制验证了锻造工艺的可行性,通过微观组织分析验证了推荐的锻造温度和应变速率能够得到细小、均匀的组织。

 In order to obtain the high-performance forgings of a certain track shoe with uniform structure, grain size meeting the requirements and no forging defects, firstly,the rheological datas of 42CrMo steel were obtained by thermal compression experiments, and the Arrhenius constitutive equation was constructed. The results show that when the strain rate is 0.01-0.1 s-1 and the temperature is higher than 850 ℃, there is a significant peak in the true stress-true strain curve of material, and the softening effect is obvious. The dynamic recrystallization softening effect is significantly greater than the work hardening effect. When the strain rate is higher, the peak stress of material is not obvious, and the softening effect is not significant, which indicates that under the high strain rate, the material cannot fully recrystallize in time, and its softening mechanism is dynamic recovery. Secondly, the thermal processing maps of 42CrMo steel under different deformation amounts were constructed, and it is found that the high-risk areas of instability for 42CrMo steel are mainly located in the low temperature and high strain rate areas, and a few are located in the high temperature and low strain rate areas. When the logarithmic strain rate is less than -2.5 and the temperature is 850-1050 ℃, the material has high thermal processing stability during the thermal processing. Furthermore, the forging process of a certain track shoe was analyzed by numerical simulation, the forgings with good forming effect and no forging defects such as folding and insufficient filling was obtained, and all indicators meet the design requirements. Finally, the feasibility of the forging process was verified by trial production, and the microstructure analysis verifies that the recommended forging temperature and strain rate can obtain fine and uniform microstructure. 

基金项目:
新疆应用职业技术学院重点教改项目(XYZY2021 KYB001)
作者简介:
作者简介:刘辉(1977-),女,硕士,副教授,E-mail:76721819@qq.com
参考文献:
[1]范莉, 于志生, 徐斌, 等. 履带板成形工艺研究进展[J]. 江西建材, 2016,(8): 2.

Fan L, Yu Z S, Xu B, et al. Research progress in forming technology of track shoe[J]. Jiangxi Building Materials, 2016,(8): 2.

[2]张宏志, 武玉平, 周建军,等. 车用高锰钢履带板静压造型工艺研究[J]. 铸造, 2015, 64(10):1036-1038,1041.

Zhang H Z, Wu Y P, Zhou J J, et al. Process development of static molding of high-manganese steel track used for special vehicle[J]. Foundry, 2015, 64(10): 1036-1038,1041.

[3]Du Z M, Qi Y S, Wang C S, et al. Research on forging process for 42CrMo dual-grouser track shoe used in special vehicle[J]. Procedia Manufacturing, 2020, 50: 314-317.

[4]Park W Y,Chang Y C,Lee S S,et al. Prediction of the tractive performance of a flexible tracked vehicle[J]. Journal of Terramechanics, 2007, 45(1-2):13-23.[5]陈利华, 李顺, 李宏伟, 等. 高性能铝合金履带板成形技术研究[J]. 新技术新工艺, 2020,(1):14-19.

Chen L H, Li S, Li H W, et al. Research on forming technology of high-performance aluminum alloy solepate[J]. New Technology & New Process, 2020,(1):14-19.

[6]张敏, 张新东, 张开举,等. 大节距双齿履带板的锻造生产[J]. 锻造与冲压, 2013,(23): 62-63.

Zhang M, Zhang X D, Zhang K J, et al. Forging production of large pitch double tooth track shoes[J]. Forging & Metalforming, 2013,(23): 62-63.

[7]孙兴辰. 推土机履带板锻造全过程工艺设计及质量控制的研究[D].济南:山东大学, 2019.

Sun X C. Research on Forging Process Design and Quality Control of Bulldozer Crawler Plate[D]. Jinan:Shandong University, 2019.

[8]李科锋, 孙晓东, 陈波, 等. 薄壁深长筋履带下板体成形工艺研究[J]. 新技术新工艺, 2016,(9): 86-88.

Li K F, Sun X D, Chen B, et al. Research on thin-walled deep muscle tracks the lower body forming technology[J]. New Technology & New Process, 2016,(9): 86-88.

[9]徐磊. 湿地履带板锻造工艺设计及成形过程数值模拟[D]. 济南:山东大学, 2013.

Xu L. Forging Process and Die Design and the Numerical Simulation of Wetland Creeper Tread[D]. Jinan:Shandong University, 2013.

[10]陈园园, 齐会萍, 李永堂, 等. 锻态42CrMo钢高温变形过程中本构模型修正及激活能演化[J]. 锻压技术, 2021, 46(11): 260-269.

Chen Y Y, Qi H P, Li Y T, et al. Modification of constitutive model and evolution of activation energy for forged 42CrMo steel during high temperature deformation process[J]. Forging & Stamping Technology, 2021, 46(11): 260-269.

[11]陈园园, 李永堂, 庞晓龙, 等. 考虑应变补偿的铸态42CrMo钢本构模型[J]. 锻压技术, 2021, 46(5): 246-252.

Chen Y Y, Li Y T, Pang X L, et al. Constitutive model of as-cast 42CrMo steel based on strain compensation[J]. Forging & Stamping Technology, 2021, 46(5): 246-252.

[12]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.

[13]段海龙. 42CrMo结合齿热锻成形机理及微观组织演变规律研究[D]. 唐山:华北理工大学, 2021.

Duan H L. Study on the Mechanism and Microstructure Evolution of 42CrMo Conjunction Gear During Forging Process[D]. Tangshan:North China University of Science and Technology, 2021.

[14]周琳,刘运玺,陈玮,等.Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图[J].稀有金属,2022,46(1):27-35.

Zhou L, Liu Y X, Chen W, et al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy[J]. Chinese Journal of Rare Metals,2022,46(1):27-35.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9