网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车制动器推力杠杆模锻缺陷及工艺分析
英文标题:Die forging defects and process analysis for automobile brake thrust lever
作者:刘晓立1 2 3 刘虹1 郑富元1 刘志强1 赵昌德1 张明2  黄素霞3 王占一2 闫宾4 郭进喜2 
单位:1.金马工业集团股份有限公司 2.河北工程大学 机械与装备工程学院 河北省智能工业装备技术重点实验室3.北京科技大学 机械工程学院4.安阳工学院 机械工程学院 
关键词:流线缺陷 模锻成形 制动器推力杠杆 镦粗 压扁 
分类号:TG316
出版年,卷(期):页码:2023,48(8):25-31
摘要:

 流线缺陷是制约模锻产品质量的关键问题之一,因此,解决汽车零部件模锻过程中的流线缺陷问题已刻不容缓。基于塑性加工理论和热力耦合工艺,利用有限元DEFORM-3D软件建立了全流程模锻成形过程,对汽车制动器推力杠杆模锻成形过程中的流线缺陷问题进行了分析,并通过实验验证了模型的准确性。根据汽车制动器推力杠杆结构特征设计了两种模锻成形工艺方案JT和HJT,对比分析了两种方案的锻件成形过程、加载方式、锻件成形质量、锻件温度分布、锻件流线分布情况和受力分布等。研究表明:HJT方案可以改善模锻过程中的流线分布和受力分布,提高了锻件的抗拉强度和材料利用率,为解决流线缺陷问题奠定了理论基础。

 Streamline defect is one of the key problems restricting the quality of die forging products, so it is urgent to solve the problem of streamline defect in the die forging process for automobile parts. Therefore, based on the plastic processing theory and thermal-mechanical coupling process, the whole process of die forging was established by finite element software DEFORM-3D, the streamline defect problems in the die forging process of automobile brake thrust lever were analyzed, and the accuracy of the model was verified by experiments. Then, according to the structural characteristics of automobile brake thrust lever, two die forging process schemes of JT and HJT were designed, and the forgings forming process, loading mode,forming quality of  forgings, temperature distribution of forgings, streamline distribution of forgings and force distribution of the two schemes were compared and analyzed. The research shows that HJT scheme can improve the streamline distribution and loading distribution in the die forging process, and significantly improves the tensile strength and material utilization of the forgings, which lays a theoretical foundation for solving the problem of streamline defect.

基金项目:
河北省教育厅青年基金资助项目(QN2021209);国家自然科学基金资助项目(52005148);山东省科技型中小企业创新能力提升工程项目(2022TSGC2510,2022TSGC1231);安阳市科技计划资助项目(2022C01GX015)
作者简介:
作者简介:刘晓立(1986-),男,博士,讲师,E-mail:liuxiaoli01206332@163.com
参考文献:

[1]Moraes A L I, Balancin O. Numerical simulation of hot closed die forging of a low carbon steel coupled with microstructure evolution[J]. Materials Research, 2015,18(1):92-97.


[2]Wei K, Yang H, Fan X G, et al. Unequal thickness billet design for large-scale titanium alloy rib-web components under isothermal closed-die forging[J]. The International Journal of Advanced Manufacturing Technology, 2015,81(5-8):729-744.

[3]Hawryluk M, Jakubik J. Analysis of forging defects for selected industrial die forging processes[J]. Engineering Failure Analysis, 2016,59:396-409.

[4]Gao P F, Yan X G, Fei M Y, et al. Formation mechanisms and rules of typical types of folding defects during die forging[J]. The International Journal of Advanced Manufacturing Technology, 2019,104(1-4):1603-1612.

[5]Gao P F, Fei M Y, Yan X G, et al. Prediction of the folding defect in die forging: A versatile approach for three typical types of folding defects[J]. Journal of Manufacturing Processes, 2019,39:181-191.

[6]ukaszek-Soek A, Krawczyk J, S'leboda T, et al. Optimization of the hot forging parameters for 4340 steel by processing maps[J]. Journal of Materials Research and Technology, 2019,8(3):3281-3290.

[7]Konstantinov I L, Sidelnikov S B, Voroshilov D S, et al. Use of computer simulation for modernization technology of aluminum alloys hot die forging[J]. The International Journal of Advanced Manufacturing Technology, 2020,107(3-4):1641-1647.

[8]Banaszek G, Bajor T, Kawaek A, et al. Investigation of the influence of open-die forging parameters on the flow kinetics of AZ91 magnesium alloy[J]. Materials, 2021,14(14):2-17.

[9]Mohammeda A, Ahmed I, Allow M. Improvement of metal forging processes by stresses and temperatures analysis[J]. Engineering and Technology Journal, 2022,40(6):41-50.

[10]Liu Y H, Wu Y, Wang J, et al. Defect analysis and design optimization on the hot forging of automotive balance shaft based on 3D and 2D simulations[J]. The International Journal of Advanced Manufacturing Technology, 2018,94(5-8):2739-2749.

[11]彭颖红,周飞,阮雪榆.齿轮坯模锻成形表面缺陷分析[J].上海交通大学学报,1998,(5):3-7.

Peng Y H, Zhou F, Ruan X Y. Analysis of surface defects in gear blank forging forming [J]. Journal of Shanghai Jiao Tong University, 1998, (5): 3-7.

[12]黄华贵,杜凤山,许志强.大锻件内部疏松缺陷锻造压实过程FEM分析[J].工程力学,2011,28(9):245-250.

Huang H G, Du F S, Xu Z Q. FEM analysis of internal porosity defects in large forgings during forging compaction process [J]. Engineering Mechanics, 2011, 28 (9): 245-250.

[13]Gao Z S, Li J B, Deng X Z, et al. Research on gear tooth forming control in the closed die hot forging of spiral bevel gear[J]. The International Journal of Advanced Manufacturing Technology, 2018,94(5-8):2993-3004.

[14]Hibbe P, Hirt G. Analysis of the bond strength of voids closed by open-die forging[J]. International Journal of Material Forming, 2020,13(1):117-126.

[15]Pandya V A, George P M. Analysis of die stress and forging force for DIN 1.2714 die material during closed die forging of anchor shackle[J]. Materials Today: Proceedings, 2021,45(6):4695-4701.

[16]Hawryluk M, Rychlik M. An implementation of robotization for the chosen hot die forging process[J]. Archives of Civil and Mechanical Engineering, 2022,22(3):2-22.

[17]Yin J, Hu R F. Closed-die forging process of copper alloy valve body: finite element simulation and experiments[J]. Journal of Materials Research and Technology, 2021,10:1339-1347.

[18]Rajesh K V D, Buddi T, Mishra H. Finite element simulation of Ti-6Al-4V billet on open die forging process under different temperatures using Deform-3D[J]. Advances in Materials and Processing Technologies, 2021,8(2):1-10.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9