网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TB9钛合金芯杆冷镦成形模拟及实验研究
英文标题:Simulation and experiment study on cold heading for TB9 titanium alloy core rod
作者:童晋方1 冯治国1 2 江玉莲1 陶亮1 
单位:1.贵州大学 机械工程学院2.贵州大学 贵州省特色装备及制造技术重点实验室 
关键词:冷镦成形 TB9钛合金 芯杆镦头 剪切带 组织性能 
分类号:TG316.1
出版年,卷(期):页码:2023,48(8):32-40
摘要:

 针对TB9钛合金芯杆冷镦成形存在的问题,利用DEFORM有限元软件模拟分析了TB9钛合金芯杆的镦制成形工艺,讨论了多工位冷镦成形中变形量、摩擦因数对芯杆镦头质量的影响。进而通过实验分析了芯杆镦头剪切带的组织和力学性能。结果表明:芯杆三工位镦制成形中,采用不同镦制变形量获得了芯杆镦头的应变分布,有效控制了因镦头中心部位变形程度高而造成的镦制缺陷。摩擦因数的减小会降低镦头的应变,当变形量为50%时,三工位镦制成形的摩擦因数为0.35的镦头中心部位的等效应变为1.18874,摩擦因数为0.25的镦头中心部位的等效应变为1.12713,摩擦因数为0.15的镦头中心部位的等效应变为1.07401,提高了镦头的均匀变形程度。通过测试分析芯杆镦头样件可知,镦头内部无微孔洞、微裂纹等缺陷产生,镦头内部形成的剪切带区域的微观组织最密且呈纤维状,剪切带区域的平均硬度为354.8 HV,为芯杆镦头硬度最大之处。

 For the existing problems in cold heading of TB9 titanium alloy core rod, the cold heading process of TB9 titanium alloy core rod was simulated and analyzed by finite element software DEFORM, and the influences of deformation amount and friction coefficient of multi-station cold heading on the quality of heading head of core rod were discussed. Then, the microstructure and mechanical properties of the shear zone for heading head of core rod were analyzed by experiment. The results show that the strain distribution for heading head of core rod is obtained by using different heading deformation amounts in the three-station heading of core rod, which effectively controls the heading defects caused by the high deformation in the center of heading head. The reduction of friction coefficient reduces the strain of heading head, when the deformation amount is 50%, the equivalent strain in the center part of heading head which is formed by three-station heading becomes 1.18874 with the friction coefficient of 0.35, the equivalent strain in the center part of heading head becomes 1.12713 with the friction coefficient of 0.25, and the equivalent strain in the center part of heading head becomes 1.07401 with the friction coefficient of 0.15, which improves the uniform deformation degree of heading head. Through the test and analysis on the heading head samples of core rod, it can be seen that there are no micro-holes, micro-cracks and other defects inside the heading head, and the microstructure in the shear zone formed inside the heading head is the densest and fibrous, and the average hardness in the shear zone is 354.8 HV, which is the hardest part for the heading head of core rod.

基金项目:
国家自然科学基金资助项目(52165042);贵州科学技术基金重点项目(黔科合基础[2020]1Z049);贵州省优秀青年人才项目(黔科合平台人才[2021]5617号);贵阳市科技人才培养项目(筑科合同[2021]43-1号)
作者简介:
作者简介:童晋方(1998-),男,硕士研究生,E-mail:2796147363@qq.com;通信作者:冯治国(1978-),男,博士,博士生导师,教授,E-mail:zgfeng@gzu.edu.en
参考文献:
[1]Schmidt P, El-Chaikh A, Christ H J. Effect of duplex aging on the initiation and propagation of fatigue cracks in the solute-rich metastable β titanium alloy Ti 38-644[J]. Metallurgical and Materials Transactions A, 2011, 42(9):2652-2667.

[2]Boyer R R, Briggs R D. The use of β titanium alloys in the aerospace industry[J]. Journal of Materials Engineering and Performance, 2005, 14(6):681-685.

[3]任德春,刘玉敬,张慧博.冷变形和时效热处理对TB9钛合金组织和性能影响[J].稀有金属材料与工程,2020,49(3):1083-1089.

Ren D C,Liu Y J,Zhang H B,et al. Influence of cold deformation and aging heat treatment on microstructure and mechanical property of TB9 titanium alloy[J]. Rare Metal Materials and Engineering, 2020, 49(3):1083-1089.

[4]高文静.变形量和时效对TB9钛合金丝材组织和性能影响[J].世界有色金属,2020,(12):154-155.

Gao W J. Impact of cold drawing deformation and aging on microstructure and mechanical property of TB9 titanium alloy[J]. World Nonferrous Metals, 2020,(12):154-155.

[5]胡明,董利民,张志强,等.有限元模拟TC16合金镦制六角螺栓的头部变形行为[J].稀有金属材料与工程,2017,46(S1):61-66.

Hu M,Dong L M,Zhang Z Q,et al. Finite element simulated hexagon bolt heading behaviors of TC16 titanium alloy wire[J]. Rare Metal Materials and Engineering, 2017, 46(S1):61-66.

[6]杨万博,霍元明,何涛,等.TC16钛合金航空紧固件冷镦成形实验研究[J].塑性工程学报,2020,27(10):7-12.

Yang W B,Huo Y M,He T,et al. Experimental study on cold heading forming of TC16 titanium alloy aerospace fastener[J].Journal of Plasticity Engineering,2020, 27(10):7-12.

[7]Bai X F, Zhao Y Q, Zeng W D, et al. Deformation mechanism and microstructure evolution of TLM titanium alloy during cold and hot compression[J]. Rare Metal Materials and Engineering, 2015, 44(8):1827-1831.

[8]Lee W S,Kao C H. Hot deformation behaviour and microstructural evolution of biomedical Ti-13Nb-13Zr alloy in high strain rate range[J]. Materials Science and Engineering A, 2016, 677:230-239.

[9]张旭. 电磁铆接过程铆钉动态塑性变形行为及组织性能研究[D].哈尔滨:哈尔滨工业大学,2016.

Zhang X. Research on Dynamic Plastic Deformation Behavior and Microstructure and Mechanical Properties of Rivets in Electromagnetic Riveting[D]. Harbin:Harbin Institute of Technology,2016.

[10]黄伯云. 中国材料工程大典 [M].北京:化学工业出版社, 2006.

Huang B Y.China Material Engineering Canon [M]. Beijing:Chemical Industry Press,2006.

[11]Yang X W,Li W Y,Fu Y, et al. Finite element modelling for temperature, stresses and strains calculation in linear friction welding of TB9 titanium alloy[J]. Journal of Materials Research and Technology, 2019, 8(5): 4797-4818.

[12]汪大年. 金属塑性成形原理[M]. 北京:机械工业出版社, 1982.

Wang D N. Principles of Metal Forming [M]. Beijing: China Machine Press, 1982.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9