网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于响应面与遗传算法的汽车前围板拉延工艺参数优化
英文标题:Optimization on drawing process parameters for automobile front panel based on response surface and genetic algorithm
作者:陈青山1 潘书华2 黄瑶1 王雷刚1 
单位:1.江苏大学 材料科学与工程学院 2.扬州宏运车业有限公司 
关键词:汽车前围板 冲压工艺 灵敏度分析 二阶多项式响应面 多目标优化 遗传算法 
分类号:TG386.3
出版年,卷(期):页码:2023,48(8):72-77
摘要:

 以某皮卡汽车前围板为目标,研究型面复杂零件成形后全局质量上的控制,避免局部开裂与起皱。基于二阶多项式响应面结合遗传算法进行优化设计。首先,以最大减薄率和成形安全区比率为优化目标,采用灵敏度分析法筛选对材料拉延阶段影响较大的关键工艺参数组合;其次,通过Box-Behnken试验设计在样本空间内获取少量且分布合理的样本点,并采用AutoForm软件模拟拉延+切边工序得到的各样本点的成形质量结果;然后,以二阶多项式拟合设计变量与优化目标的响应面模型,并检验其精度。最后,通过遗传算法寻优工艺参数组合并将其用于指导试生产,最终测量结果表明,零件的最薄厚度为0.64 mm,整体拉延充分,无起皱与开裂现象。

 For the front panel of a pickup truck, the overall quality control of parts with complex shapes after forming was studied to avoid local cracking and wrinkling, and based on second-order polynomial response surface combined with genetic algorithm, the optimal design was conducted. Firstly, taking the maximum thinning rate and the forming safety zone ratio as the optimization objectives, the key process parameter combination that had a greater impact on the material drawing stage was selected by the sensitivity analysis method. Secondly, the less sample points with reasonable distribution in the sample space were acquired by Box-Behnken experiment design, and the drawing+trimming process was simulated by software AutoForm to obtain the forming quality results of each sampling point. Furthermore, the response surface model of design variables and optimization objectives was fitted by the second-order polynomial, and its accuracy was tested. Finally, the combination of process parameters was optimized by the genetic algorithm to guide the trial production. The final measurement results show that the minimum thickness of the part is 0.64 mm, and the overall drawing is sufficient without wrinkling and cracking.

基金项目:
国家自然科学基金资助项目(51775249)
作者简介:
作者简介:陈青山(1998-),男,硕士研究生,E-mail:chen-qs@foxmail.com;通信作者:黄瑶(1964-),女,硕士,副教授,硕士生导师,E-mail:592177388@qq.com
参考文献:

[1]鲍立,郑德兵,余欢庆. 基于六西格玛设计的前纵梁边缘开裂冲压工艺优化[J]. 车辆与动力技术,2022,(1):6-13.


Bao L, Zheng D B, Yu H Q. Research on stamping process optimization of edge cracking of front rail based on DFSS[J]. Vehicle & Power Technology, 2022, (1): 6-13.

[2]靳舜尧,唐振宇,黄重国. 5A02铝合金薄壁异形管内高压成形数值模拟及试验[J]. 稀有金属,2020,44(11):1121-1128.

Jin S Y, Tang Z Y, Huang Z G. Numerical simulation and experiment of internal high pressure forming (IHPF) of 5A02 aluminum alloy thin-walled shaped tubes[J]. Chinese Journal of Rare Metals,2020,44(11):1121-1128.

[3]熊保玉,刘颖. 汽车后围板的CAE工艺优化研究[J]. 锻压装备与制造技术,2022,57(4):101-107.

Xiong B Y, Liu Y. Research on CAE process optimization of automobile rear panel[J]. China Metalforming Equipment & Manufacturing Technology, 2022, 57(4): 101-107.

[4]支明远. 基于冲压CAE仿真分析的工艺优化与降本提质[J]. 锻压装备与制造技术,2022,57(3):62-66.

Zhi M Y. Cost reduction improvement based on stamping CAE analysis[J]. China Metalforming Equipment & Manufacturing Technology, 2022, 57(3): 62-66.

[5]鲜小红,张定路,陈英,等. 基于Dynaform的新能源地库车顶盖冲压成形工艺有限元分析[J]. 锻压技术,2022,47(12):44-55.

Xiang X H, Zhang D L, Chen Y, et al. Finite element analysis on stamping process for cab roof of new energy underground depot vehicle based on Dynaform[J]. Forging & Stamping Technology, 2022, 47(12): 44-55.

[6]吴光辉. 基于AutoForm的汽车后门外板拉延分析与工艺参数优化[J]. 锻压技术,2021,46(7):90-95.

Wu G H. Drawing analysis and process parameter optimization on automobile rear door outer panel based on AutoForm[J]. Forging & Stamping Technology, 2021, 46(7): 90-95.

[7]孙远韬,陈凯歌,章增增,等. 基于近似模型的板料成形稳健优化方法研究[J]. 中国工程机械学报,2021,19(4):283-288,312.

Sun Y T, Chen K G, Zhang Z Z, et al. Research on robust optimization method of sheet metal forming based on approximate model[J]. China Journal of Construction Machinery, 2021, 19(4): 283-288,312.

[8]刘尚保,龚红英,尤晋,等. 基于Dynaform灰斗车拉深成形响应面优化分析[J]. 锻压技术,2022,47(7):86-94.

Liu S B, Gong H Y, You J, et al. Response surface optimization analysis on gray hopper deep drawing based on Dynaform[J]. Forging & Stamping Technology, 2022, 47(7): 86-94.

[9]吴磊,冯玮. 基于响应面法的带交叉筋筒形零件热摆辗成形质量分析[J]. 锻压技术,2022,47(9):118-125.

Wu L, Feng W. Quality analysis on hot orbital forming for cylindrical parts with cross ribs based on response surface method[J]. Forging & Stamping Technology, 2022, 47(9): 118-125.

[10]魏鑫,王雷刚,王钊,等. 基于响应面法的汽车后轮罩工艺参数优化[J]. 锻压技术,2021,46(10):70-77.

Wei X, Wang L G, Wang Z, et al. Optimization on process parameters for automobile rear wheel cover based on response surface method[J]. Forging & Stamping Technology, 2021, 46(10): 70-77.

[11]赖宇阳. Isight参数优化理论与实例详解[M]. 北京:北京航空航天大学出版社,2012.

Lai Y Y. Isight Parameter Optimization Theory and Case Study in Detail[M]. Beijing: Beihang University Press, 2012.

[12]肖瑞,杨明,黄朝文. 基于响应面法对211ZX新型高强铝合金固溶工艺的优化设计[J].稀有金属,2019,43(10):1040-1046.

Xiao R, Yang M, Huang C W. Optimal design of 211ZX strength aluminum alloy solid solution process based on response surface method[J]. Chinese Journal of Rare Metals,2019,43(10):1040-1046.

[13]周志伟,龚红英,赵小云,等. 基于RSM与GA的汽车后备箱盖板成形工艺参数多目标优化[J]. 锻压技术,2021,46(3):75-81,95.

Zhou Z W, Gong H Y, Zhao X Y, et al. Multi-objective optimization on process parameters for automobile trunk cover based on RSM and GA[J]. Forging & Stamping Technology, 2021, 46(3): 75-81,95.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9