[1]管弦, 唐国华. 悬吊支架法施工钢混组合梁的力学行为研究[J]. 公路交通科技, 2022, 39(10): 84-90.
Guan X, Tang G H. Study on mechanical behavior of steel-concrete composite girders constructed by suspension bracing method [J]. Journal of Highway and Transportation Research and Development, 2022, 39(10): 84-90.
[2]吴丽丽, 于雅倩, 胡存川. 圆形断面波形钢腹板支架结构稳定承载性能研究[J]. 采矿与安全工程学报, 2020, 37(3): 481-489.
Wu L L, Yu Y Q, Hu C C. Stability capacity of circular steel supporting structure with corrugated webs [J]. Journal of Mining & Safety Engineering, 2020, 37(3): 481-489.
[3]Zhang K, Yong Q L, Sun X J, et al. Effect of tempering temperature on microstructure and mechanical properties of high Ti microalloyed directly quenched high strength steel [J]. Acta Metall. Sin., 2014, 50(8): 913-920.
[4]周成, 叶其斌, 田勇, 等. 超高强度结构钢的研究及发展[J]. 材料热处理学报, 2021, 42(1): 14-23.
Zhou C, Ye Q B, Tian Y, et al. Research and application progress of ultra-high strength structural steel [J]. Journal of Materials and Heat Treatment, 2021, 42(1): 14-23.
[5]赵艳君, 孟庆雪, 马本莉, 等. 高强高韧低合金马氏体钢的静态软化行为[J]. 机械工程材料, 2017, 41(4): 24-28.
Zhao Y J, Meng Q X, Ma B L, et al. Static softening behavior of a high-strength and high-toughness low-alloy martensite steel [J]. Materials for Mechanical Engineering, 2017, 41(4): 24-28.
[6]陈小虎, 李守华, 曹晓恩, 等. 汽车用低合金高强钢HC500LA连续退火工艺[J]. 材料热处理学报, 2021, 42(4): 132-137.
Chen X H, Li S H, Cao X E, et al. Continuous annealing process of low alloy high strength steel HC500LA for automobile [J]. Transactions of Materials and Heat Treatment, 2021, 42(4): 132-137.
[7]Ni Z F, Sun Y S, Xue F, et al. Evaluation of electroslag remelting in TiC particle reinforced 304 stainless steel [J]. Materials Science and Engineering: A, 2011, 528(18): 5664-5669.
[8]李媛媛, 甄维静, 李永亮, 等. 钙镁复合变质剂对冷轧高强钢组织遗传性及塑性影响[J]. 钢铁钒钛, 2021, 42(1): 119-125.
Li Y Y, Zhen W J, Li Y L, et al. Effect of Ca-Mg compound modifier on microstructure and plasicity in cold-rolled high strength steel [J]. Iron Steel Vanadium Titanium, 2021, 42(1): 119-125.
[9]刘罗锦. 高钛高钢中TiC析出行为及对性能的影响 [D]. 北京: 钢铁研究总院, 2019.
Liu L J. TiC Precipitation Behavior and Its Effect on Properties in High Titanium and High Wear-resistant Steels [D]. Beijing: Central Iron & Steel Research Institute, 2019.
[10]孙新军,刘罗锦,梁小凯, 等. 高钛钢中 TiC析出行为及其对耐磨粒磨损性能的影响 [J]. 金属学报, 2020, 56 (4): 661-672.
Sun X J, Liu L J, Liang X K, et al. TiC precipitation behavior and its effect on abrasion resistance of high titanium wear-resistant steel [J]. Acta Metall. Sin., 2020, 56(4): 661-672.
[11]Liu L J, Liang X K, Liu J, et al. Precipitation process of TiC in low alloy martensitic steel and its effect on wear resistance [J]. ISIJ Int., 2020, 60(1): 168-174.
[12]杨跃标, 李宗强, 邓深, 等. 热轧钛微合金化高强钢低温冲击韧性的控制[J]. 钢铁, 2021, 56(3): 41-50.
Yang Y B, Li Z Q, Deng S, et al. Low temperature impact toughness controlling for Ti-microalloyed high strength steel [J]. Iron and Steel, 2021, 56(3): 41-50.
[13]杭子迪, 冯运莉, 崔岩, 等. 高Ti微合金高强钢静态再结晶动力学模型[J]. 钢铁钒钛, 2020, 41(1): 141-146.
Hang Z D, Feng Y L, Cui Y, et al. Mathematical modeling of the recrystallization kinetics of high Ti microalloyed high strength steel [J]. Iron Steel Vanadium Titanium, 2020, 41(1): 141-146.
[14]梁文, 吴润, 胡俊, 等. 加热工艺对Nb-Ti微合金化高强钢的影响[J]. 中南大学学报:自然科学版, 2019, 50(9): 2063-2073.
Liang W, Wu R, Hu J, et al. Effect of heating process on Nb-Ti microalloyed high strength steel [J]. Journal of Central South University:Science and Technology, 2019, 50(9): 2063-2073.
[15]杨庚蔚, 陆佳伟, 孙辉, 等. Ti-V微合金化热轧高强钢的相变规律及组织性能[J]. 钢铁研究学报, 2019, 31(8): 726-732.
Yang G W, Lu J W, Sun H, et al. Microstructure, mechanical properties and phase transformation behavior of Ti-V microalloyed high-strength hot-strip steel [J]. Journal of Iron and Steel Research, 2019, 31(8): 726-732.
[16]李成刚, 周晓光, 蒋小冬, 等. 冷却工艺对Ti微合金化高强钢组织和硬度的影响[J]. 钢铁研究学报, 2021, 33(9): 987-993.
Li C G, Zhou X G, Jiang X D, et al. Influence of cooling processes on microstructure and hardness of Ti micro-alloyed high strength steel [J]. Journal of Iron and Steel Research, 2021, 33(9): 987-993.
|