[1]Leu D K, Zhuang Z W. Springback prediction of the vee bending process for high-strength steel sheets[J]. Journal of Mechanical Science and Technology, 2016, 30(3): 1077-1084.
[2]Li H Z, Dong X H, Shen Y, et al. Size effect on springback behavior due to plastic strain gradient hardening in microbending process of pure aluminum foils[J]. Materials Science and Engineering: A, 2010, 527(16-17): 4497-4504.
[3]Jiang Z Q, Yang H, Zhan M, et al. Coupling effects of material properties and the bending angle on the springback angle of a titanium alloy tube during numerically controlled bending[J]. Materials & Design, 2010, 31(4): 2001-2010.
[4]王飞, 游有鹏. 钣金 V 形折弯回弹影响因素的有限元分析[J]. 沈阳工业大学学报, 2012, 34(5): 526-529,535.
Wang F, You Y P. Finite element analysis on influencing factors of springback in sheet metal V-bending [J]. Journal of Shenyang University of Technology, 2012, 34(5): 526-529,535.
[5]Trzepieciński T, Lemu H G. Prediction of springback in V-die air bending process by using finite element method[A]. Proceedings of Matec Web of Conferences[C].Shanghai,2017.
[6]高云亮,缪卫东,冯昭伟,等.M型Ti-Ni合金血管支架的结构设计对性能的影响[J].稀有金属,2017,41(8):936-942.
Gao Y L,Miao W D,Feng Z W,et al. Influence of structural design of M type Ti-Ni alloy vascular stents on performance[J]. Chinese Journal of Rare Metals,2017,41(8):936-942.
[7]Teimouri R, Baseri H, Rahmani B, et al. Modeling and optimization of spring-back in bending process using multiple regression analysis and neural computation[J]. International Journal of Material Forming, 2014, 7(2): 167-178.
[8]刘晓宇,陆小龙,黄茜,等.基于BP神经网络的W形微弯曲回弹预测[J].机械设计,2019,36(10):14-17.
Liu X Y, Lu X L, Huang X, et al. Prediction of the micro W-bending′s springback based on the BP neural network[J]. Journal of Machine Design, 2019,36(10):14-17.
[9]陈光耀, 李恒, 贺子芮, 等. 基于机器学习的管材弯曲回弹有效预测与补偿[J]. 中国机械工程, 2020, 31(22): 2745-2752.
Chen G Y, Li H, He Z R, et al. Effective prediction and compensation of springbacks for tube bending using machine learning approach[J]. China Mechanical Engineering, 2020, 31(22): 2745-2752.
[10]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法 [S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[11]管志平,李金钊,韦钦洋,等.基于BPNN神经网络的板材V型折弯回弹预测模型[J].塑性工程学报,2022,29(8):1-10.
Guan Z P,Li J Z,Wei Q Y,et al. Prediction model of V-shaped bending springback of sheet metal based on BPNN neural network[J]. Journal of Plasticity Engineering, 2022,29(8):1-10.
[12]Fu Z M, Mo J H. Springback prediction of high-strength sheet metal under air bending forming and tool design based on GA-BPNN[J]. The International Journal of Advanced Manufacturing Technology, 2011, 53(5): 473-483.
[13]闻新, 周露, 李翔, 等. MATLAB 神经网络仿真与应用[M]. 北京:科学出版社,2003.
Wen X,Zhou L,Li X,et al. MATLAB Neural Network Simulation and Application[M].Beijing: Science Press,2003.
[14]Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
[15]Shi Y H, Eberhart R C. A modified particle swarm optimizer[A]. Proceedings of the IEEE International Conference on Evolutionary Computation[C]. Anchorage, 1998.
[16]张炎亮,齐聪,程燕培.基于DPSO-BP的机械转子故障诊断[J].机床与液压,2022,50(19):194-199.
Zhang Y L,Qi C,Cheng Y P. Fault diagnosis of mechanical rotor based on DPSO-BP[J]. Machine Tool & Hydraulics, 2022,50(19):194-199.
[17]Bansal J C, Singh P K, Saraswat M, et al. Inertia weight strategies in particle swarm optimization[A].Proceedings of the Third World Congress on Nature and Biologically Inspired Computing[C]. Salamanca,2011.
|