网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
ECAP对Al-3Fe-0.3Sc合金组织性能的影响规律
英文标题:Influence laws of ECAP on microstructure and properties for Al-3Fe-0.3Sc alloy
作者:赖昀昊 钟明 古文丽 马乾康 邓同生 
单位:江西理工大学 材料冶金化学学部 
关键词:铝铁合金 等通道转角挤压 挤压道次 力学性能 电导率 
分类号:TG376
出版年,卷(期):页码:2023,48(8):158-163
摘要:

 在自制的等通道转角挤压(ECAP)模具中按Bc路径对Al-3Fe-0.3Sc合金方形棒料进行了不同道次的挤压变形,分析了挤压道次对合金微观组织、力学性能和电导率的影响规律。研究发现:ECAP变形后合金晶粒发生明显细化,晶粒呈现特定取向,长杆状铝铁相在剧烈的剪切变形条件下发生明显的破碎。合金经第1道次ECAP变形后抗拉强度由原始铸态的105 MPa升高至121 MPa,伸长率由5.7%大幅提升至25.7%,第2道次后抗拉强度和伸长率上升不明显。第1道次ECAP变形后合金的硬度由38.7 HV上升至53.5 HV,第4道次后上升至60.4 HV。电导率由铸态的42.9%IACS上升至第1道次的46.4%IACS,后续继续增加挤压道次,电导率基本保持不变。强度和电导率的提升主要是由于晶粒得到细化,发生的动态回复有利于变形过程中产生的高密度位错向亚晶界转变,减少了晶体中的空位缺陷。研究结果为铝铁合金的性能优化及实际应用提供了参考。

 Al-3Fe-0.3Sc alloy square bars were extruded and deformed with different passes by a self-made equal channel angular pressing(ECAP) mold in the Bc route, and the influence laws of extrusion passes on microstructure, mechanical properties and electrical conductivity of alloy were analyzed. The research finds that after ECAP deformation, the alloy grains are obviously refined, the grains present a specific orientation, and the long rod-shaped aluminum-iron phases are obviously broken under severe shear deformation the conditions. After the first pass of ECAP deformation, the tensile strength of alloy increases from 105 MPa in the original as-cast state to 121 MPa, and the elongation increases significantly from 5.7% to 25.7%. After the second pass, the increasing of tensile strength and elongation is not obvious. The hardness of alloy increases from 38.7 HV to 53.5 HV after the first pass of ECAP deformation, and increases to 60.4 HV after the fourth pass. The electrical conductivity increases from 42.9%IACS in the as-cast state to 46.4%IACS in the first pass, and the electrical conductivity remains basically unchanged with the continuously increasing of extrusion pass. The increase of strength and electrical conductivity is mainly due to the grain refinement, and the dynamic recovery occurs that is conducive to the transformation of high-density dislocations generated during the deformation process to the sub-grain boundaries, which reduces the vacancy defects in the crystal. Thus, the research results provide a reference for the performance optimization and practical application of Al-Fe alloy.

基金项目:
江西省大学生创新创业训练计划项目(S202210407008,S202110407012)
作者简介:
作者简介:赖昀昊(2002-),男,本科生,E-mail:1347796687@qq.com;通信作者:邓同生(1987-),男,博士,副教授,E-mail:dts115@jxust.edu.cn
参考文献:

[1]Shuai G L, Li Z, Zhang D T, et al. The mechanical property and electrical conductivity evolution of Al-Fe alloy between room temperature and elevated temperature ECAP [J]. Vacuum, 2021, 183: 109813.


[2]El-Shenawy M, Ahmed M M Z, Nassef A, et al. Effect of ECAP on the plastic strain homogeneity, microstructural evolution, crystallographic texture and mechanical properties of AA2XXX aluminum alloy [J]. Metals, 2021, 11 (6): 938.

[3]Abd-Elaziem W, Hamada A S, Makino T, et al. Microstructural evolution during extrusion of equal channel angular-pressed AA1070 alloy in micro/mesoscale [J]. Materials Science and Technology, 2020, 36 (11): 1-9.

[4]zbeyaz K, Kaya H, Kentli A, et al. Mechanical properties and electrical conductivity performance of ECAP processed AA2024 alloy [J]. Indian Journal of Chemical Technology, 2019, 26 (3): 266-269.

[5]Suresh M, Sharma A, More A M, et al. Effect of equal channel angular pressing (ECAP) on the evolution of texture, microstructure and mechanical properties in the Al-Cu-Li alloy AA2195 [J]. Journal of Alloys and Compounds, 2019, 785: 972-983.

[6]Wang X, Guan R G, Li Y D, et al. Comparison of contribution of sub-rapid cooling and shear deformation to refinement of Fe-rich phase in hypereutectic Al-Fe alloy during rheo-extrusion [J]. Journal of Iron and Steel Research International, 2020, 27 (11): 1294-1302.

[7]戴琨, 汪志刚, 王和斌, 等. 稀土Y与喷射沉积技术对铝铁合金组织和性能的影响 [J]. 有色金属科学与工程, 2021, 12 (6): 113-122.

Dai K, Wang Z G, Wang H B, et al. Effect of rare earth yttrium and spray forming technology on microstructure and properties of Al-Fe alloy[J]. Nonferrous Metals Science and Engineering,2021, 12 (6): 113-122.

[8]Luo S X, Shi Z M, Li N Y, et al. Crystallization inhibition and microstructure refinement of Al-5Fe alloys by addition of rare earth elements [J]. Journal of Alloys and Compounds, 2019, 789: 90-99.

[9]Nayak S S, Murty B S, Pabi S K. Structure of nanocomposites of Al-Fe alloys prepared by mechanical alloying and rapid solidification processing [J]. Bulletin of Materials Science, 2008, 31 (3): 449-454.

[10]Choi Y, Hong S I. Mechanical and electrical properties of Al-Fe-Cr and Al-Fe-Zr alloys [J]. Science of Advanced Materials, 2018, 10 (4): 480-483.

[11]Medvedev A E, Murashkin M Y, Enikeev N A, et al. Optimization of strength-electrical conductivity properties in Al-2Fe alloy by severe plastic deformation and heat treatment [J]. Advanced Engineering Materials, 2018, 20 (3): 1700867.

[12]Dobromyslov A V, Taluts N I. Structure of Al-Fe alloys prepared by different methods after severe plastic deformation under pressure [J]. Physics of Metals and Metallography, 2017, 118 (6): 564-571.

[13]陈巧旺, 林翰, 姜中涛, 等. 钪在轻合金中的强化机制与应用现状 [J]. 材料科学与工程学报, 2022, 40 (4): 717-724.

Chen Q W, Lin H, Jiang Z T, et al. Strengthening mechanism and application status of scandium in light alloys[J]. Journal of Materials Science and Engineering,2022, 40 (4): 717-724.

[14]Ravisankar B, Park J K. ECAP of commercially pure titanium: A review [J]. Transactions of the Indian Institute of Metals, 2008, 61 (1): 51-62.

[15]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

[16]张迎晖, 彭凯, 冯兴宇, 等. H65黄铜ECAP变形规律和第二相取向演变的数值模拟 [J]. 有色金属科学与工程, 2017, 8 (1): 105-111.

Zhang Y H, Peng K, Feng X Y, et al. Numerical simulation of deformation behavior and secondary phase orientation in H65 brass alloys ECAP[J]. Nonferrous Metals Science and Engineering, 2017, 8 (1): 105-111.

[17]郑文悦, 陈庆吟, 洪静, 等. 铁含量对铸态铝铁合金力学性能及组织的影响 [J]. 金属热处理, 2021, 46 (4): 26-29.

Zheng W Y, Chen Q Y, Hong J, et al. Effect of Fe content on mechanical properties and microstructure of as-cast Al-Fe alloy[J]. Heat Treatment of Metals,2021, 46 (4): 26-29.

[18]付大军, 袁晓光, 刘喜欢. Al-5%Fe合金轧制变形及组织性能研究 [J]. 热加工工艺, 2010, 39 (16): 58-59,106.

Fu D J, Yuan X G, Liu X H. Study on deformation, microstructure and properties of rolled alloy Al-5%Fe[J]. Hot Working Technology, 2010, 39 (16): 58-59,106.

[19]赵兴华. 变形方式及低温时效对高Mg、Si含量6201铝合金强度及异电性的影响 [D].太原:太原理工大学, 2020.

Zhao X H. Effect of Deformation Method and Low Temperature Aging on Strength and Conductivity of 6201 Aluminum Alloy with High Mg and Si Content[D]. Taiyuan:Taiyuan University of Technology, 2020.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9