网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Mn18Cr18N钢室温拉压循环加载力学行为和微观组织演变机理
英文标题:Mechanical behavior and microstructure evolution mechanism on Mn18Cr18N steel under tension-compression cycle loading at room temperature
作者:李飞1 2 张华煜3 陈慧琴1 2 
单位:1. 太原科技大学 材料科学与工程学院2. 山西省大型铸锻件工程技术研究中心 3. 太原科技大学 应用科学学院 
关键词:Mn18Cr18N钢 拉压循环加载 力学行为 微观组织演变 应变幅 
分类号:TG316
出版年,卷(期):页码:2023,48(8):231-237
摘要:

 通过室温拉压循环加载试验,研究了Mn18Cr18N钢在±0.005~±0.10应变幅范围内的循环加载力学行为和微观组织演变。采用光学显微镜和透射电子显微镜观察了Mn18Cr18N钢包括金相组织、位错形态以及形变孪晶等亚结构在内的微观组织演变。研究结果表明,Mn18Cr18N钢在拉压循环加载中,循环力学特性和应变幅有关,随着循环应变幅的增大,Mn18Cr18N钢的循环应力幅呈现增大趋势。在应变幅为±0.10时,Mn18Cr18N钢经过1个周期循环加载后,流变应力为988.1 MPa,为0.2%初始屈服强度的1.6倍,这说明采用大应变幅循环加载提高了Mn18Cr18N钢的累积塑性应变,从而显著提高了强度。在较低应变幅(±0.005~±0.01)条件下,Mn18Cr18N钢的变形主要以平面滑移为主,位错重排和其他滑移系的激活是造成Mn18Cr18N钢循环软化的主要原因。应变幅较大时,高位错增殖使基体内应力升高,局部区域滑移困难,孪生机制被激活,Mn18Cr18N钢总体上呈现循环强化特性。

 The mechanical behavior and microstructure evolution of Mn18Cr18N steel under cycle loading in the strain amplitude range of ±0.005-±0.10 were studied by room temperature tension-compression cycle loading tests. The microstructure evolution of Mn18Cr18N steel, including metallographic structure, dislocation morphology, deformation twins and other substructures, were observed by optical microscope and transimision electron microscope. The research results show that the cyclic mechanical properties of Mn18Cr18N steel are related to the strain amplitudes in the tension-compression cycle loading. With the increasing of cyclic strain amplitude, the cyclic stress amplitude of Mn18Cr18N steel shows an increasing trend. When the strain amplitude is ±0.10, the rheological stress of Mn18Cr18N steel is 988.1 MPa after one cycle loading, which is 1.6 times of the 0.2% initial yield strength. The research  indicates that the cumulative plastic strain of Mn18Cr18N steel is increased by the cycle loading with large strain amplitude to significantly improve the strength. At a lower strain amplitude (±0.005-±0.01), the deformation of Mn18Cr18N steel is mainly plane slip, and the dislocation rearrangement and the activation of other slip systems are the main reasons for the cycle softening of Mn18Cr18N steel. When the strain amplitude is larger, the proliferation of high dislocation increases the internal stress of the matrix, the local area slips difficultly, the twinning mechanism is activated, and Mn18Cr18N steel generally exhibits cycle strengthening characteristics. 

基金项目:
山西省基础研究计划青年项目(202203021222197);山西省高等学校科技创新项目(2021L326);太原科技大学博士科研启动基金资助项目(20212012)
作者简介:
作者简介:李飞(1989-),男,博士,讲师,E-mail:170723191@qq.com
参考文献:

[1]曹呈祥,崔怀周, 梁强, 等. Mn18Cr18N高氮奥氏体不锈钢的冶炼工艺[J]. 中国冶金, 2021, 31(5): 98-103,110.


Cao C X, Cui H Z, Liang Q, et al. Smelting process of Mn18Cr18N high nitrogen austenitic stainless steel[J]. China Metallurgy,2021, 31(5): 98-103,110.

[2]赵石岩, 严智航, 李娜, 等. 护环液压胀形加载路径优化设计方法[J]. 塑性工程学报, 2019, 26(3): 96-103.

Zhao S Y, Yan Z H, Li N, et al. Optimized design method for load path of retaining ring hydraulic bulging [J]. Journal of Plasticity Engineering, 2019, 26 (3): 96-103.

[3]刘洁, 张志红. 铸态Mn18Cr18N钢轧制热压缩实验分析[J]. 锻压技术, 2021, 46(1): 197-201.

Liu J, Zhang Z H. Experimental analysis of rolling hot compression for as-cast Mn18Cr18N steel[J]. Forging & Stamping Technology, 2021, 46(1): 197-201.

[4]Li Y S, Dong Y W, Jiang Z H, et al. Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel[J]. International Journal of Minerals,Metallurgy and Materials, 2023, 30(2): 324-334.

[5]He W W, Li F, Zhang H Y, et al. The influence of loading paths on mechanical behavior and microstructure of Mn18Cr18N austenitic stainless steel[J]. Journal of Materials Engineering and Performance, 2020, 29(7): 4708-4715.

[6]He W W, Li F, Zhang H Y, et al. The influence of cold rolling deformation on tensile properties and microstructures of Mn18Cr18N austenitic stainless steel[J]. Materials Science and Engineering: A, 2019, 764: 138245. 

[7]李飞, 张华煜, 何文武, 等. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为[J]. 金属学报, 2016, 52 (8): 956-964.

Li F, Zhang H Y, He W W, et al. Compression and tensile consecutive deformation behavior of Mn18Cr18N austenite stainless steel [J]. Acta Metallurgica Sinica, 2016, 52 (8): 956-964.

[8]钟云龙, 李国强, 相阳. 用于金属阻尼器的Q235钢材循环硬化应变幅相关特性[J/OL]. 工程力学:1-14[2022-10-24].https://kns.cnki.net/kcms/detail/11.2595.O3.20221024.1530. 200.html.

Zhong Y L, Li G Q, Xiang Y. Strain amplitude-dependent hardening property of Q235 steel for metallic dampers[J/OL]. Engineering Mechanics:1-14[2022-10-24]. https://kns.cnki.net/kcms/detail/11.2595.O3.20221024.1530.200.html.

[9]何群, 陈以一, 田海. LYP100钢材大应变下滞回性能[J]. 工程力学, 2018, 35(S1): 27-33.

He Q, Chen Y Y, Tian H. Hysteretic behavior of low yield point steel LYP100 under large inelastic strain[J]. Engineering Mechanics,2018, 35(S1): 27-33.

[10]吴旗, 陈以一, 周锋. 高强度钢材在±10%大应变下的循环加载试验[J]. 建筑结构学报, 2014, 35(2): 89-94.

Wu Q, Chen Y Y, Zhou F. Cyclic loading tests of high strength steel under large inelastic strains [J]. Journal of Building Structures, 2014, 35(2): 89-94.

[11]Dusicka P, Itani A M, Buckle I G. Cyclic response of plate steels under large inelastic strains [J]. Journal of Constructional Steel Research, 2007, 63(2): 156-164.

[12]陈胜虎, 王琪玉, 姜海昌,等. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J/OL]. 金属学报:1-11[2023-03-15]. http://kns.cnki.net/kcms/detail/21.1139.TG.20230315.1052.134.html.

Chen S H, Wang Q Y, Jiang H C, et al. Effect of δ-ferrite on hot deformation and recrystallization of 316KD austenitic stainless steel for sodium-cooled fast reactor application [J/OL]. Acta Metallurgica Sinica:1-11[2023-03-15]. http://kns.cnki.net/kcms/detail/21.1139.TG.20230315.1052.134.html.

[13]Wang Q Y, Chen S H, Lyu X L, et al.Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel[J]. Journal of Materials Science & Technology, 2022, 114(19):7-15.

[14]Takemoto T, Mukai K, Hoshino K. Effect of nitrogen on low cycle fatigue behavior of austenitic stainless steel[J]. ISIJ International, 1984, 26(4): 337-344.

[15]Qin F M,Zhu H, Wang Z X, et al. Dislocation and twinning mechanisms for dynamic recrystallization of as-cast Mn18Cr18N steel[J]. Materials Science and Engineering: A, 2017,684:634-644.

[16]陈新力,张军,詹华.超高强度钢DP980包辛格效应测量与参数识别[J]. 塑性工程学报, 2022, 29(12):183-187.

Chen X L, Zhang J, Zhan H. Bauschinger effect measurement and parameter identification of ultra-high strength steel DP980[J]. Journal of Plasticity Engineering,2022,29(12):183-187.

[17]Yu X Y, Ji H T, Zhang H, et al. Experimental and numerical investigation on the Bauschinger effect during cold forming of TC4 ELI alloy[J]. International Journal of Material Forming,2022,15(2):16.

[18]Kreins M, Wilkes J, Wesselmecking S, et al. Effect of phase-selective nanoscale precipitates on the Bauschinger effect in austenitic-ferritic duplex stainless steels[J]. Metallurgical and Materials Transactions A, 2022, 53(11):3906-3917.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9