[1]Deng J, Lin Y C, Li S S, et al. Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy [J]. Materials & Design, 2013, 49:209-219.
[2]尚晓晴.316LN钢空洞损伤的微观机理与热变形断裂准则的研究[D].上海:上海交通大学, 2019.
Shang X Q. Research on the Micro-mechanics of Void Damage and the Modeling of Ductile Fracture for Hot Deformation of the 316LN Steel [D]. Shanghai: Shanghai Jiao Tong University, 2019.[3]Spitzig W A, Smelser R E, Richmond O. The evolution of damage and fracture in iron compacts with various initial porosities [J]. Acta Metallurgica, 1988, 36(5):1201-1211.
[4]Misra R D K, Thompson S W, Hylton T A, et al. Microstructures of hot-rolled high-strength steels with significant differences in edge formability [J]. Metallurgical and Materials Transactions A, 2001, 32:745-760.
[5]Barnby J T. The initiation of ductile failure by fractured carbides in an austenitic stainless steel [J]. Acta Metallurgica,1967, 15(5):903-909.
[6]Tanguy B, Besson J, Piques R, et al. Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part I: Experimental results [J]. Engineering Fracture Mechanics, 2005, 72(1):49-72.
[7]Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures [J]. Metallurgical and Materials Transactions B, 2001, 32:205-221.
[8]Morito S, Huang X, Furuhaar T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Materialia, 2006, 54(19):5323-5331.
[9]Wallin K, Saario T, Trrnen K. Statistical model for carbide induced brittle fracture in steel [J]. Metal Science, 1984, 18(1):13-16.
[10]刘晓燕,柳奎君,杨西荣,等.超细晶纯钛疲劳裂纹扩展及裂纹尖端组织演变[J].稀有金属,2022,46(7):882-888.
Liu X Y, Liu K J, Yang X R,et al. Fatigue crack growth and crack tip microstructure evolution of ultrafine grained pure titanium[J]. Chinese Journal of Rare Metals,2022,46(7):882-888.
[11]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[12]李贵军. 韧性断裂的细观机制和Ⅰ-Ⅱ复合型断裂准则的研究[D]. 杭州:浙江大学,1991.
Li G J. Study on Mesoscopic Mechanism of Ductile Fracture and Ⅰ-Ⅱ Composite Fracture Criterion [D]. Hangzhou: Zhejiang University, 1991.
[13]Suzuki H G, Nishimura S, Imamura J, et al. Hot ductility in steels in the temperature range between 900 and 600 ℃[J]. Tetsu-to-Hagane, 1981, 67(8): 1180-1189.
[14]Hug E, Martinez M, Chottin J. Temperature and stress state influence on void evolution in a high-strength dual-phase steel [J]. Materials Science and Engineering: A, 2015, 626:286-295.
[15]Semiatin S L, Seetharaman V, Ghosh A K, et al. Cavitation during hot tension testing of Ti-6Al-4V [J]. Materials Science and Engineering: A,1998, 256(1-2): 92-110.
[16]Erdogan M. The effect of new ferrite content on the tensile fracture behaviour of dual phase steels [J]. J. Mater. Sci., 2002, 37:3623-3630.
[17]Garrison W M, Moody N. Ductile fracture [J]. Journal of Physics and Chemistry of Solids, 1987, 48:1035-1074.
|