网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铸态42CrMo钢高温拉伸变形中工艺参数和动态再结晶对空洞演化的影响及微观损伤机理分析
英文标题:Influence of process parameters and dynamic recrystallization on void evolution and analysis on microscopic damage mechanism for as-cast 42CrMo steel in high temperature tensile deformation
作者:陈园园1 齐会萍2 李永堂2 刘慧玲1 
单位:1.晋中学院 机械系2.太原科技大学 材料科学与工程学院 
关键词:铸态42CrMo钢 动态再结晶 断口组织 空洞演化 夹杂物 
分类号:TG333
出版年,卷(期):页码:2023,48(8):243-252
摘要:

 用热模拟实验机对铸态42CrMo钢进行高温拉伸实验,分析了断口及断口附近的微观组织、空洞演化与温度、应变速率及应变之间的关系,探讨了工艺参数和动态再结晶行为对空洞演化的影响,研究了铸态42CrMo钢的微观损伤机理。结果表明:铸态42CrMo钢的变形温度控制在1423~1473 K,并控制应变速率和应变,可以抑制高温拉伸变形中的空洞萌生、长大和聚集;发生动态再结晶行为时,微空洞不易形核和长大,空洞之间聚集的间距减小,增加了断裂应变;铸态42CrMo钢高温拉伸变形过程中,氧化硅、硫化锰、氧化铝和氧化钙等夹杂物的脱落或破裂导致空洞形核,且马氏体晶粒之间也可形核。

 The high-temperature tensile experiments of as-cast 42CrMo steel were conducted by thermal simulation experimental machine, and the relationships between microstructures at the fracture and near the fracture, void evolution and temperature, strain rate and strain were analyzed. Then, the influences of process parameters and dynamic recrystallization behavior on void evolution were discussed, and the microscopic damage mechanism of as-cast 42CrMo steel was studied. The results show that the initiation, growth and aggregation of viods in the high-temperature tensile deformation can be inhibited by controlling the deformation temperature of as-cast 42CrMo steel at 1423-1473 K and controlling the strain rate and strain. When dynamic recrystallization behavior occurs, the micro-voids are not easy to nucleate and grow, the spacing of aggregation between voids is reduced, and the fracture strain is increased. In the process of high-temperature tensile deformation of as-cast 42CrMo steel,the fall off or break of inclusions such as silica oxide, manganese sulfide, aluminum oxide and calcium oxide leads to void nucleation, and the nucleation can also occur between martensite grains.

基金项目:
国家自然科学基金资助项目(51875383,51575371);山西省高校科技创新项目(2020L0579)
作者简介:
作者简介:陈园园(1983-),女,博士,讲师,E-mail:123042922@qq.com;通信作者:齐会萍(1974-),女,博士,教授,E-mail:qhp9974@tyust.edu.cn
参考文献:

[1]Deng J, Lin Y C, Li S S, et al. Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy [J]. Materials & Design, 2013, 49:209-219.


[2]尚晓晴.316LN钢空洞损伤的微观机理与热变形断裂准则的研究[D].上海:上海交通大学, 2019.

Shang X Q. Research on the Micro-mechanics of Void Damage and the Modeling of Ductile Fracture for Hot Deformation of the 316LN Steel [D]. Shanghai: Shanghai Jiao Tong University, 2019.[3]Spitzig W A, Smelser R E, Richmond O. The evolution of damage and fracture in iron compacts with various initial porosities [J]. Acta Metallurgica, 1988, 36(5):1201-1211.

[4]Misra R D K, Thompson S W, Hylton T A, et al. Microstructures of hot-rolled high-strength steels with significant differences in edge formability [J]. Metallurgical and Materials Transactions A, 2001, 32:745-760.

[5]Barnby J T. The initiation of ductile failure by fractured carbides in an austenitic stainless steel [J]. Acta Metallurgica,1967, 15(5):903-909.

[6]Tanguy B, Besson J, Piques R, et al. Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part I: Experimental results [J]. Engineering Fracture Mechanics, 2005, 72(1):49-72.

[7]Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures [J]. Metallurgical and Materials Transactions B, 2001, 32:205-221.

[8]Morito S, Huang X, Furuhaar T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Materialia, 2006, 54(19):5323-5331.

[9]Wallin K, Saario T, Trrnen K. Statistical model for carbide induced brittle fracture in steel [J]. Metal Science, 1984, 18(1):13-16.

[10]刘晓燕,柳奎君,杨西荣,等.超细晶纯钛疲劳裂纹扩展及裂纹尖端组织演变[J].稀有金属,2022,46(7):882-888.

Liu X Y, Liu K J, Yang X R,et al. Fatigue crack growth and crack tip microstructure evolution of ultrafine grained pure titanium[J]. Chinese Journal of Rare Metals,2022,46(7):882-888.

[11]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

[12]李贵军. 韧性断裂的细观机制和Ⅰ-Ⅱ复合型断裂准则的研究[D]. 杭州:浙江大学,1991.

Li G J. Study on Mesoscopic Mechanism of Ductile Fracture and Ⅰ-Ⅱ Composite Fracture Criterion [D]. Hangzhou: Zhejiang University, 1991.

[13]Suzuki H G, Nishimura S, Imamura J, et al. Hot ductility in steels in the temperature range between 900 and 600 ℃[J]. Tetsu-to-Hagane, 1981, 67(8): 1180-1189.

[14]Hug E, Martinez M, Chottin J. Temperature and stress state influence on void evolution in a high-strength dual-phase steel [J]. Materials Science and Engineering: A, 2015, 626:286-295.

[15]Semiatin S L, Seetharaman V, Ghosh A K, et al. Cavitation during hot tension testing of Ti-6Al-4V [J]. Materials Science and Engineering: A,1998, 256(1-2): 92-110.

[16]Erdogan M. The effect of new ferrite content on the tensile fracture behaviour of dual phase steels [J]. J. Mater. Sci., 2002, 37:3623-3630.

[17]Garrison W M, Moody N. Ductile fracture [J]. Journal of Physics and Chemistry of Solids, 1987, 48:1035-1074.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9