网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
置氢Ti65钛合金高温流变行为和热加工性能
英文标题:High temperature rheological behavior and hot processing properties on hydrogenated Ti65 titanium alloy
作者:邵光保1 胡进2 占克勤1 席国庆1 田壵2 左培1 邓磊2 李文彬2 
单位:1.湖北三环锻造有限公司2.华中科技大学 材料成形与模具技术全国重点实验室 
关键词:置氢Ti65钛合金 流变行为 本构方程 热加工图 置氢量 
分类号:TG316
出版年,卷(期):页码:2023,48(8):253-260
摘要:

 Ti65钛合金具有优良的高温强度、热稳定性与抗蠕变性能,但其热成形温度高、变形抗力大。热氢处理作为一种钛合金高温增塑工艺,可以显著降低Ti65钛合金高温成形时的变形抗力,改善其热加工性能。为了研究置氢量对Ti65钛合金高温流变行为和热加工性能的影响,探究Ti65钛合金最佳置氢量和成形工艺窗口,对不同置氢量下的Ti65钛合金试样进行热压缩实验。结果表明,置氢Ti65钛合金在790~940 ℃温度范围内变形时,最佳置氢量(质量分数)为0.25%,与未置氢钛合金相比,峰值应力的降幅约为66.8%。基于真应力-真应变曲线数据,建立了0.25%置氢量时Ti65钛合金的Arrhenius本构方程,以及真应变为0.2、0.4和0.6条件下的热加工图。研究发现,Ti65钛合金在840~880 ℃、应变速率大于0.01 s-1区域附近变形时,出现失稳现象,随着应变的增大,失稳区域收缩;而在790~840 ℃、应变速率为0.01~1 s-1区域内变形时,具备良好的热加工性能。

 Ti65 titanium alloy has excellent high-temperature strength, hot stability and creep resistance, but its hot forming temperature is high and deformation resistance is large. As a high-temperature plasticizing process of titanium alloy, hot hydrogen treatment can significantly reduce the deformation resistance of Ti65 titanium alloy during high-temperature forming and improve its hot processing properties. Therefore, in order to study the influence of hydrogen content on the high-temperature rheological behavior and hot processing properties of Ti65 titanium alloy and explore the optimal hydrogen content and the forming process windows of Ti65 titanium alloy, hot compression experiments were carried out on Ti65 titanium alloy samples under different hydrogen contents. The results show that when hydrogenated Ti65 titanium alloy is deformed at the temperature range of 790-940 ℃, the optimal hydrogen content (mass fraction) is 0.25%, and the peak stress decreases by about 66.8% compared with the non-hydrogenated titanium alloy. Based on the true stress-true strain curve data, the Arrhenius constitutive equation of Ti65 titanium alloy with hydrogen content of 0.25% was established, and the hot processing maps of Ti65 titanium alloy under the conditions of the true strains of 0.2, 0.4 and 0.6 were also established. The research finds that when Ti65 titanium alloy is deformed at the temperature of 840-880 ℃ and the strain rate of greater than 0.01 s-1, the instability phenomenon occurs, and with increasing of the strain, the unstable region shrinks, while deformed at the temperature of 790-840 ℃ and the strain rate of 0.01-1 s-1, it has good hot processing properties.  

基金项目:
湖北省重点研发计划(2020BAB040)
作者简介:
作者简介:邵光保(1979-),男,工学学士,高级工程师,E-mail:13871609838@163.com
参考文献:

[1]刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94.


Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94.

[2]洪小英, 李亮亮, 王乐. 高温钛合金航空发动机叶盘锻造变形均匀性研究[J]. 塑性工程学报, 2022, 29(9): 88-94.

Hong X Y, Li L L, Wang L. Study on forging deformation uniformity of high-temperature titanium alloy aero-engine blade disc[J]. Journal of Plasticity Engineering, 2022, 29(9): 88-94.

[3]徐全斌, 刘诗园. 国外航空航天领域钛及钛合金牌号及应用[J]. 世界有色金属, 2022,(16): 96-99.

Xu Q B, Liu S Y. Grades of titanium and titanium alloys developed in western countries and their applications in the aerospace industry[J]. World Nonferrous Metals, 2022,(16): 96-99.

[4]Zhao Q Y, Sun Q Y, Xin S W, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process[J]. Materials Science and Engineering: A, 2022,845: 143260.

[5]Gloria A, Montanari R, Richetta M, et al. Alloys for aeronautic applications: State of the art and perspectives[J]. Metals, 2019, 9(6): 662.

[6]杨冬雨, 付艳艳, 惠松骁,等. 高强高韧钛合金研究与应用进展[J]. 稀有金属, 2011, 35(4): 575-580.

Yang D Y, Fu Y Y, Hui S X, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011, 35(4): 575-580.

[7]Khorev A I, Khorev M A. Titanium alloys: Application and perspectives of development[J]. Titan, 2005, (1): 40-53.

[8]Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60[J]. Acta Materialia, 2017, 131: 305-314.

[9]王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1-26.

Wang Q J, Liu J R, Yang R. High temperature titanium alloy: Status and perspective[J]. Journal of Aeronautical Materials, 2014, 34(4): 1-26.

[10]Li X F, Jiang J, Wang S, et al. Effect of hydrogen on the microstructure and superplasticity of Ti-55 alloy[J]. International Journal of Hydrogen Energy, 2017, 42(9): 6338-6349.

[11]Zong Y Y, Huang S S, Feng Y J, et al. Hydrogen induced softening mechanism in near alpha titanium alloy[J]. Journal of Alloys and Compounds, 2012, 541: 60-64.

[12]Zhang X M, Zhao Y Q, Zeng W D. Effect of hydrogen on the superplasticity of Ti600 alloy[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4354-4360.

[13]Ma T F, Chen R R, Zheng D S, et al. Hydrogen-induced softening of Ti-44Al-6Nb-1Cr-2V alloy during hot deformation[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8329-8337.

[14]Zong Y Y, Shan D B, Lyu Y, et al. Effect of 0.3wt%H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy[J]. International Journal of Hydrogen Energy, 2007, 32(16): 3936-3940.

[15]Han Y F, Zeng W D, Qi Y L, et al. Optimization of forging process parameters of Ti600 alloy by using processing map[J]. Materials Science and Engineering: A, 2011, 529: 393-400.

[16]Ghasemi E, Zarei-Hanzaki A, Farabi E, et al. Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: A study using process map development[J]. Journal of Alloys and Compounds, 2017, 695: 1706-1718.

[17]Jia W J, Zeng W D, Zhou Y G, et al. High-temperature deformation behavior of Ti60 titanium alloy[J]. Materials Science and Engineering: A, 2011, 528(12): 4068-4074.

[18]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.

[19]Sellars C M, Tegart W J M G. Hot workability[J]. International Materials Reviews, 1972, 17(1): 1-24.

[20]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9