[1]刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94.
Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94.
[2]洪小英, 李亮亮, 王乐. 高温钛合金航空发动机叶盘锻造变形均匀性研究[J]. 塑性工程学报, 2022, 29(9): 88-94.
Hong X Y, Li L L, Wang L. Study on forging deformation uniformity of high-temperature titanium alloy aero-engine blade disc[J]. Journal of Plasticity Engineering, 2022, 29(9): 88-94.
[3]徐全斌, 刘诗园. 国外航空航天领域钛及钛合金牌号及应用[J]. 世界有色金属, 2022,(16): 96-99.
Xu Q B, Liu S Y. Grades of titanium and titanium alloys developed in western countries and their applications in the aerospace industry[J]. World Nonferrous Metals, 2022,(16): 96-99.
[4]Zhao Q Y, Sun Q Y, Xin S W, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process[J]. Materials Science and Engineering: A, 2022,845: 143260.
[5]Gloria A, Montanari R, Richetta M, et al. Alloys for aeronautic applications: State of the art and perspectives[J]. Metals, 2019, 9(6): 662.
[6]杨冬雨, 付艳艳, 惠松骁,等. 高强高韧钛合金研究与应用进展[J]. 稀有金属, 2011, 35(4): 575-580.
Yang D Y, Fu Y Y, Hui S X, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011, 35(4): 575-580.
[7]Khorev A I, Khorev M A. Titanium alloys: Application and perspectives of development[J]. Titan, 2005, (1): 40-53.
[8]Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60[J]. Acta Materialia, 2017, 131: 305-314.
[9]王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1-26.
Wang Q J, Liu J R, Yang R. High temperature titanium alloy: Status and perspective[J]. Journal of Aeronautical Materials, 2014, 34(4): 1-26.
[10]Li X F, Jiang J, Wang S, et al. Effect of hydrogen on the microstructure and superplasticity of Ti-55 alloy[J]. International Journal of Hydrogen Energy, 2017, 42(9): 6338-6349.
[11]Zong Y Y, Huang S S, Feng Y J, et al. Hydrogen induced softening mechanism in near alpha titanium alloy[J]. Journal of Alloys and Compounds, 2012, 541: 60-64.
[12]Zhang X M, Zhao Y Q, Zeng W D. Effect of hydrogen on the superplasticity of Ti600 alloy[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4354-4360.
[13]Ma T F, Chen R R, Zheng D S, et al. Hydrogen-induced softening of Ti-44Al-6Nb-1Cr-2V alloy during hot deformation[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8329-8337.
[14]Zong Y Y, Shan D B, Lyu Y, et al. Effect of 0.3wt%H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy[J]. International Journal of Hydrogen Energy, 2007, 32(16): 3936-3940.
[15]Han Y F, Zeng W D, Qi Y L, et al. Optimization of forging process parameters of Ti600 alloy by using processing map[J]. Materials Science and Engineering: A, 2011, 529: 393-400.
[16]Ghasemi E, Zarei-Hanzaki A, Farabi E, et al. Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: A study using process map development[J]. Journal of Alloys and Compounds, 2017, 695: 1706-1718.
[17]Jia W J, Zeng W D, Zhou Y G, et al. High-temperature deformation behavior of Ti60 titanium alloy[J]. Materials Science and Engineering: A, 2011, 528(12): 4068-4074.
[18]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[19]Sellars C M, Tegart W J M G. Hot workability[J]. International Materials Reviews, 1972, 17(1): 1-24.
[20]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
|