网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
某车型内高压成形结构后副车架产品与工艺开发
英文标题:Product and process development on hydroforming structure rear sub-frame for a certain vehicle
作者:刘宁1 冯竞慧1 李欢2 周亮3 王瑀琦4 
单位:1. 长春职业技术学院 2. 一汽奔腾轿车有限公司 3. 长春汽车工业高等专科学校 4. 伦敦帝国理工学院 
关键词:内高压成形 后副车架 纵梁 一模双出 全工序工艺方案 成本模型 
分类号:TG306
出版年,卷(期):页码:2023,48(9):81-88
摘要:

 为实现乘用车底盘副车架轻量化和低成本设计,基于某车型冲焊结构后副车架,全新开发内高压成形结构后副车架。利用产品有限元仿真技术验证了内高压成形结构后副车架的耐久性和强度满足要求。针对内高压成形纵梁,提出一种一模S型双件出件的低成本化工艺设计方式,实现一模双出,提升了制造效率,实现材料利用率从91.0%提升至93.5%。利用工艺成形有限元仿真技术验证了内高压成形纵梁一模S型双件成形件具有良好的可制造性,其最大减薄率为18.0%,满足要求,并制定了全工序工艺方案。通过产品和工艺有限元的仿真技术驱动了结构轻量化、低成本化和可制造性设计,利用成本模型详细评估了两种结构的成本差异。完成了总成样件试制和总成台架试验,验证了内高压成形结构后副车架产品和工艺开发的可行性,实现了减重15.1%、制造成本降低15.8%。

  In order to realize the lightweight and low-cost design of passenger vehicle chassis sub-frame, based on the punching and welding structure of rear sub-frame for a certain vehicle, the hydroforming structure rear sub-frame was newly developed, and the finite element simulation technology of product was used to verify that the durability and strength of the hydroforming structure rear sub-frame meet the requirements. Then, for the hydroforming longitudinal beam, a low-cost process design method which realized one die producing two S-typed pieces was proposed to improve the manufacturing efficiency, and the material utilization rate was increased from 91.0% to 93.5%. Furthermore, the finite element simulation technology of process forming was used to verify the good manufacturability of the one die producing two S-typed pieces for hydroforming longitudinal beam, the maximum thinning rate was 18.0% to meet the requirements, and the whole process scheme was formulated. Finally, the design of structure lightweight, low-cost and manufacturability were driven by the finite element simulation technology of product and process, and the cost difference between the two structures was evaluated in detail by the cost model. The results of the trial production of assembly sample and the assembly bench test show that the feasibility of the product and process development for hydroforming structure rear sub-frame is verified, the weight reduction is 15.1%, and the manufacturing cost is reduced by 15.8%. 

基金项目:
2022年度吉林省职业教育与成人教育教学改革研究课题(2022ZCY309);2022年度吉林省高教科研重点课题(JGJX2022B62);长春市教育科学“十四五”2022年度规划课题(JKBLX2022007);2022年度长春职业技术学院校级课题(1422XJ04);长春市科学技术局 “长春市科技发展计划项目”(21ST07)
作者简介:
作者简介:刘宁(1986-),男,硕士,讲师 E-mail:4103677@qq.com
参考文献:

 [1]王娜.三维轴线后副车架纵梁内高压成形工艺[J].锻压技术,2021,46(4): 121-126. 


Wang N. Hydroforming process on three-dimensional axis side-beam of rear subframe[J]. Forging & Stamping Technology, 2021,46(4): 121-126.

[2]刘晓晶,杨然,冯章超,等.汽车前副车架内高压成形工艺研究[J]. 哈尔滨理工大学学报,2018,23(2): 129-133. 

Liu X J, Yang R, Feng Z C, et al. Research on hydroforming for automobile front sub-frame [J]. Journal of Harbin University of Science and Technology, 2018, 23(2): 129-133.

[3]王永刚.基于ANSYS副车架单根钢管内高压成形数值模拟[J]. 铸造技术,2017,38(1): 215-217. 

Wang Y G. Numerical simulation of inside high pressure forming for subframe of single pipe based on ANSYS[J]. Foundry Technology, 2017, 38(1): 215-217.

[4]尹辉俊,曹稚英,张婷婷.基于拓扑优化法的副车架概念设计[J]. 机械设计与研究, 2018, 34(3): 175-178. 

Yin H J, Cao Z Y, Zhang T T. Conceptual design of subframe based on topology optimization method[J]. Machine Design & Research, 2018, 34(3): 175-178.

[5]熊雪英,王玉明,彭强. 宝钢先进成形制造成本模型和技术路线[J].塑性工程学报,2016,23(3):103-107. 

Xiong X Y, Wang Y M, Peng Q. Study on manufacturing cost model for advanced forming and technical route for Baosteel[J]. Journal of Plasticity Engineering, 2016, 23(3): 103-107.

[6]夏益新,王娜,陈新平,等.热冲压和液压成形技术在宝钢汽车轻量化服务中的应用及发展趋势[J].精密成形工程, 2017,9(6): 104-110. 

Xia Y X, Wang N, Chen X P, et al. Application and development trend of lightweight technology for vehicle with hot stamping and hydroforming in Baosteel[J]. Journal of Netshape Forming Engineering, 2017, 9(6): 104-110.

[7]苏海波,邓将华.异形截面副车架液压成形工艺研究及过程优化[J].塑性工程学报,2019,26(5): 99-104.

Su H B, Deng J H. Hydroforming study and process optimization of subframe with special section[J]. Journal of Plasticity Engineering, 2019, 26(5): 99-104.

[8]Cooper R. The rise of activity-based costing, part one: What is an activity-based cost system[J]. Journal of Cost Management, 1988, 2(2): 41-48.

[9]Cooper R. The rise of activity-based costing, part two: When do I need an activity-based cost system[J]. Journal of Cost Management, 1988, 2(3): 45-54.

[10]Cooper R. The rise of activity-based costing, part three: How many cost drivers do you need and how do you select them [J]. Journal of Cost Management, 1989, 2(4): 34-46.

[11]马芳武,王卓君,杨猛,等. 汽车后副车架轻量化概念设计方法研究[J]. 汽车工程, 2021, 43(5): 776-783.

Ma F W, Wang Z J, Yang M, et al. Research on lightweight conceptual design method of vehicle rear subframe[J]. Automotive Engineering, 2021, 43(5): 776-783. 

[12]Zhong Z. Rear subframe lightweight design based on multi-disciplinary and multi-objective[J]. Machine Design and Research, 2018, 34(5): 177-182.

[13]Chang J W. A study on dimensional change after heat treatment and optimal chemical composition of steels with 1200 MPa tensile strength for automotive subframe[J]. Journal of the Korean Society for Heat Treatment, 2020, 33(3): 107-116.

[14]Liao Y, Li F, Li Z. Lightweight design of aluminum rear subframe in conceptual design stage[J]. Automotive Engineering, 2020, 42(12): 1737-1743.

[15]Boren H E. A Computer Model for Estimating Development and Procurement Costs of Aircraft[R]. The Rand Corporation,1976.

[16]PRICE Corp. PRICE Fundamentals Course Material[M]. New Jersey: Price Systems L.L.C, 2004.

[17]Staubus G J. Activity Costing and Input-output Accounting[M]. Illinois: Richard D. Irwin, Incorporation, 1971.

[18]陈建军. 内高压成形工艺及其在汽车轻量化中的应用[J]. 汽车工程, 2009, 31(10): 980-985. 

Chen J J. Tube hydroforming technology and its application to vehicle lightweighting[J]. Automotive Engineering, 2009, 31(10): 980-985.

[19]冯金芝,邓江波,郑松林,等. 基于材料替换的轿车副车架设计方法[J].汽车工程, 2016, 38(6): 778-782.

Feng J Z, Deng J B, Zheng S L, et al. Design method of car subframe based on material substitution[J]. Automotive Engineering, 2016, 38(6): 778-782.

[20]陈新平,胡晓,宋晨,等.超高强钢QP980液压成形B柱仿真分析及试验研究[J].精密成形工程,2016,8(5): 60-63. 

Chen X P, Hu X, Song C, et al. Simulation experiment analysis of AHSS QP980 hydroforming B pillar[J]. Journal of Netshape Forming Engineering, 2016,8(5): 60-63.

[21]朱剑锋,王水莹,林逸,等.后副车架拓扑优化概念设计和智能轻量化方法研究[J].汽车工程, 2015, 37(12): 1471-1476. 

Zhu J F, Wang S Y, Lin Y, et al. A study on the methods of concept design with topology optimization and intelligent lightweighting for rear subframe[J]. Automotive Engineering, 2015,37(12): 1471-1476.

[22]苑世剑,刘伟,王国峰,等.轻合金复杂薄壁构件流体压力成形技术新进展[J].上海航天,2019,36(2): 31-37. 

Yuan S J, Liu W, Wang G F, et al. Advances in fluid pressure forming of complex light metal thin-walled components[J]. Aerospace Shanghai, 2019, 36(2): 31-37.

[23]艾丽昆,曲世明.空心双拐曲轴内高压成形加载路径优化的研究[J].机床与液压,2019,47(2): 32-36. 

Ai L K, Qu S M.Research on optimization of internal high pressure forming loading path for hollow double throw crankshaft[J]. Machine Tool & Hydraulics, 2019, 47(2): 32-36. 

[24]崔晓磊,韩聪,苑世剑.加载条件对内高压成形管件尺寸精度的影响[J].材料科学与工艺,2020,28(3): 150-156. 

Cui X L, Han C, Yuan S J. Effect of loading conditions on dimension accuracy of hydroformed tubular parts [J]. Materials Science and Technology, 2020, 28(3): 150-156.

[25]苑世剑.现代液压成形技术[M].2版. 北京: 国防工业出版社,2016. 

Yuan S J. Modern Hydroforming Technology [M].2nd Edition. Beijing: National Defense Industry Press,2016.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9