[1]王娜.三维轴线后副车架纵梁内高压成形工艺[J].锻压技术,2021,46(4): 121-126.
Wang N. Hydroforming process on three-dimensional axis side-beam of rear subframe[J]. Forging & Stamping Technology, 2021,46(4): 121-126.
[2]刘晓晶,杨然,冯章超,等.汽车前副车架内高压成形工艺研究[J]. 哈尔滨理工大学学报,2018,23(2): 129-133.
Liu X J, Yang R, Feng Z C, et al. Research on hydroforming for automobile front sub-frame [J]. Journal of Harbin University of Science and Technology, 2018, 23(2): 129-133.
[3]王永刚.基于ANSYS副车架单根钢管内高压成形数值模拟[J]. 铸造技术,2017,38(1): 215-217.
Wang Y G. Numerical simulation of inside high pressure forming for subframe of single pipe based on ANSYS[J]. Foundry Technology, 2017, 38(1): 215-217.
[4]尹辉俊,曹稚英,张婷婷.基于拓扑优化法的副车架概念设计[J]. 机械设计与研究, 2018, 34(3): 175-178.
Yin H J, Cao Z Y, Zhang T T. Conceptual design of subframe based on topology optimization method[J]. Machine Design & Research, 2018, 34(3): 175-178.
[5]熊雪英,王玉明,彭强. 宝钢先进成形制造成本模型和技术路线[J].塑性工程学报,2016,23(3):103-107.
Xiong X Y, Wang Y M, Peng Q. Study on manufacturing cost model for advanced forming and technical route for Baosteel[J]. Journal of Plasticity Engineering, 2016, 23(3): 103-107.
[6]夏益新,王娜,陈新平,等.热冲压和液压成形技术在宝钢汽车轻量化服务中的应用及发展趋势[J].精密成形工程, 2017,9(6): 104-110.
Xia Y X, Wang N, Chen X P, et al. Application and development trend of lightweight technology for vehicle with hot stamping and hydroforming in Baosteel[J]. Journal of Netshape Forming Engineering, 2017, 9(6): 104-110.
[7]苏海波,邓将华.异形截面副车架液压成形工艺研究及过程优化[J].塑性工程学报,2019,26(5): 99-104.
Su H B, Deng J H. Hydroforming study and process optimization of subframe with special section[J]. Journal of Plasticity Engineering, 2019, 26(5): 99-104.
[8]Cooper R. The rise of activity-based costing, part one: What is an activity-based cost system[J]. Journal of Cost Management, 1988, 2(2): 41-48.
[9]Cooper R. The rise of activity-based costing, part two: When do I need an activity-based cost system[J]. Journal of Cost Management, 1988, 2(3): 45-54.
[10]Cooper R. The rise of activity-based costing, part three: How many cost drivers do you need and how do you select them [J]. Journal of Cost Management, 1989, 2(4): 34-46.
[11]马芳武,王卓君,杨猛,等. 汽车后副车架轻量化概念设计方法研究[J]. 汽车工程, 2021, 43(5): 776-783.
Ma F W, Wang Z J, Yang M, et al. Research on lightweight conceptual design method of vehicle rear subframe[J]. Automotive Engineering, 2021, 43(5): 776-783.
[12]Zhong Z. Rear subframe lightweight design based on multi-disciplinary and multi-objective[J]. Machine Design and Research, 2018, 34(5): 177-182.
[13]Chang J W. A study on dimensional change after heat treatment and optimal chemical composition of steels with 1200 MPa tensile strength for automotive subframe[J]. Journal of the Korean Society for Heat Treatment, 2020, 33(3): 107-116.
[14]Liao Y, Li F, Li Z. Lightweight design of aluminum rear subframe in conceptual design stage[J]. Automotive Engineering, 2020, 42(12): 1737-1743.
[15]Boren H E. A Computer Model for Estimating Development and Procurement Costs of Aircraft[R]. The Rand Corporation,1976.
[16]PRICE Corp. PRICE Fundamentals Course Material[M]. New Jersey: Price Systems L.L.C, 2004.
[17]Staubus G J. Activity Costing and Input-output Accounting[M]. Illinois: Richard D. Irwin, Incorporation, 1971.
[18]陈建军. 内高压成形工艺及其在汽车轻量化中的应用[J]. 汽车工程, 2009, 31(10): 980-985.
Chen J J. Tube hydroforming technology and its application to vehicle lightweighting[J]. Automotive Engineering, 2009, 31(10): 980-985.
[19]冯金芝,邓江波,郑松林,等. 基于材料替换的轿车副车架设计方法[J].汽车工程, 2016, 38(6): 778-782.
Feng J Z, Deng J B, Zheng S L, et al. Design method of car subframe based on material substitution[J]. Automotive Engineering, 2016, 38(6): 778-782.
[20]陈新平,胡晓,宋晨,等.超高强钢QP980液压成形B柱仿真分析及试验研究[J].精密成形工程,2016,8(5): 60-63.
Chen X P, Hu X, Song C, et al. Simulation experiment analysis of AHSS QP980 hydroforming B pillar[J]. Journal of Netshape Forming Engineering, 2016,8(5): 60-63.
[21]朱剑锋,王水莹,林逸,等.后副车架拓扑优化概念设计和智能轻量化方法研究[J].汽车工程, 2015, 37(12): 1471-1476.
Zhu J F, Wang S Y, Lin Y, et al. A study on the methods of concept design with topology optimization and intelligent lightweighting for rear subframe[J]. Automotive Engineering, 2015,37(12): 1471-1476.
[22]苑世剑,刘伟,王国峰,等.轻合金复杂薄壁构件流体压力成形技术新进展[J].上海航天,2019,36(2): 31-37.
Yuan S J, Liu W, Wang G F, et al. Advances in fluid pressure forming of complex light metal thin-walled components[J]. Aerospace Shanghai, 2019, 36(2): 31-37.
[23]艾丽昆,曲世明.空心双拐曲轴内高压成形加载路径优化的研究[J].机床与液压,2019,47(2): 32-36.
Ai L K, Qu S M.Research on optimization of internal high pressure forming loading path for hollow double throw crankshaft[J]. Machine Tool & Hydraulics, 2019, 47(2): 32-36.
[24]崔晓磊,韩聪,苑世剑.加载条件对内高压成形管件尺寸精度的影响[J].材料科学与工艺,2020,28(3): 150-156.
Cui X L, Han C, Yuan S J. Effect of loading conditions on dimension accuracy of hydroformed tubular parts [J]. Materials Science and Technology, 2020, 28(3): 150-156.
[25]苑世剑.现代液压成形技术[M].2版. 北京: 国防工业出版社,2016.
Yuan S J. Modern Hydroforming Technology [M].2nd Edition. Beijing: National Defense Industry Press,2016.
|