网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
电辅助不锈钢/碳钢轧制复合厚度比变化规律轧制
英文标题:Change law on composite thickness ratio in electrically assisted rolling for stainless steel/carbon steel
作者:林继彬1 2 阮金华1 2 张宏昱1 2 相博洋1 2 
单位:1.冶金装备及其控制教育部重点实验室(武汉科技大学) 2. 武汉科技大学 精密制造研究院 
关键词:电辅助轧制 不锈钢/碳钢复合板 复合厚度比 初始厚度比 压下率 电流密度 轧制速度 
分类号:TG335.81
出版年,卷(期):页码:2023,48(9):98-107
摘要:

 采用有限元法,进行了电辅助不锈钢/碳钢轧制复合过程的模拟,对电流场、温度场和金属流动规律进行了分析。研究了初始厚度比、压下率、电流密度、轧制速度作为变量对不锈钢/碳钢复合板的复合厚度比的影响。结果表明:各因素单独作用时,减小初始厚度比、减小压下率、增大电流密度、增大轧制速度均能降低复合厚度比;而多因素复合作用时,增大压下率反而能增大不锈钢板上的电流密度,从而提高其温度,使得复合厚度比降低;初始厚度比对复合厚度比的作用效果最大,其次为电流密度,最后是压下率及轧制速度。

 The electrically assisted rolling process of stainless steel/carbon steel was simulated by the finite element method, and the current field, temperature field and metal flow law were analyzed. Then, the influences of initial thickness ratio, reduction ratio, current density and rolling speed as single variables on the composite thickness ratio of stainless steel/carbon steel composite plate were studied. The results show that when each factor acts alone, reducing the initial thickness ratio, reducing the reduction ratio, increasing the current density and increasing the rolling speed can all reduce the composite thickness ratio. But when all factors act, reducing the reduction ratio can increase the current density on stainless steel plate, thus increasing its temperature and reducing the composite thickness ratio. The initial thickness ratio has the greatest effect on the composite thickness ratio, followed by the current density, and finally the reduction ratio and the rolling speed.

基金项目:
国家自然科学基金青年基金资助项目(51701145)
作者简介:
作者简介:林继彬(1998-),男,硕士研究生 E-mail:Linjibin@wust.edu.cn 通信作者:阮金华(1985-),男,博士,副教授 E-mail:Ruan_Jinhua@wust.edu.cn
参考文献:

 [1]王玉砚. 非对称不锈钢热轧复合板材的纵向弯曲[J]. 钢铁研究学报, 1993, 5(4): 17-23.


Wang Y Y, Longitudinal bending of asymmetric stainless steel hot rolled composite sheet [J]. Journal of Iron and Steel Research, 1993, 5(4): 17-23.

[2]李龙, 张心金, 祝志超, 等. 初始板厚和压下量对热轧复合钢板复合厚度比的影响[J]. 特殊钢, 2014, 35(5): 43-46.

Li L, Zhang X J, Zhu Z C, et al. Effect of initial thickness and reduction on composite thickness ratio of hot rolled composite steel sheet [J]. Special Steel, 2014, 35(5): 43-46.

[3]姚成君. AlSn20Cu/Steel双金属板(带)复合轧制过程的厚度匹配[J]. 钢铁研究学报, 2003, 31(3): 24-27.

Yao C J. Thickness matching of AlSn20Cu/steel bimetal plate (strip) during composite rolling[J]. Journal of Iron and Steel Research, 2003, 31(3): 24-27.

[4]刘志亮, 张文志. 不锈钢复合板冷轧过程有限元模拟[J]. 机械科学与技术, 2007,(12): 1588-1591.

Liu Z L, Zhang W Z. Finite element simulation of cold rolling process of stainless steel clad plate[J]. Mechanical Science and Technology, 2007,(12): 1588-1591.

[5]戴超. 316L/EH40复合板初始层厚比设计与热轧成形研究[D]. 秦皇岛: 燕山大学, 2018.

Dai C. Study on Initial Layer Thickness Ratio Design and Hot Rolling Forming of 316L/EH40 Composite Plate[D]. Qinhuangdao: Yanshan University, 2018.

[6]金贺荣,戴超,段昌新,等. 316L/EH40不锈钢复合板变形行为及初始层厚比设计[J]. 钢铁, 2018, 53(10): 46-53.

Jin H R, Dai C, Duan C X, et al. Deformation behavior and initial layer thickness ratio design of 316L/EH40 stainless steel clad plate[J]. Iron & Steel, 2018, 53(10): 46-53.

[7]王震, 叶静静, 张庆安, 等. 304/Q235B热轧复合板界面的显微组织特征[J]. 安徽工业大学学报:自然科学版, 2019, 36(2): 103-107.

Wang Z, Ye J J, Zhang Q A, et al. Microstructure characteristics of interface of 304/Q235B hot rolled composite plate[J]. Journal of Anhui University of Technology:Natural Science, 2019, 36(2): 103-107.

[8]宜亚丽,韩晓凯,张磊,等. 316L/EH40不锈钢复合板热轧过程中晶粒组织的均匀性[J]. 钢铁, 2020, 55(1): 47-55.

Yi Y L, Han X K, Zhang L, et al. Uniformity of grain structure of 316L/EH40 stainless steel clad plate during hot rolling[J]. Iron & Steel, 2020, 55(1): 47-55. 

[9]Dhib Z, Guermazi N, Ktari A, et al. Mechanical bonding properties and interfacial morphologies of austenitic stainless steel clad plates[J]. Materials Science and Engineering: A, 2017, 696: 374-386.

[10]Hai L, Ban H. Fullrange stressstrain relation of stainlessclad bimetallic steel: Constitutive modelling[J]. Journal of Building Engineering, 2022, 57: 104868.

[11]Li Y F. Electrically assisted pressure joining of titanium alloys[J]. Journal of Manufacturing Processes, 2018, 35:681-686.

[12]金贺荣, 杨旭坤. 不锈钢复合板厚度比变化规律[J]. 塑性工程学报, 2016, 23(6): 101-105.

Jin H R, Yang X K. Variation law of thickness ratio of stainless steel clad plate[J]. Journal of Plasticity Engineering, 2016, 23(6): 101-105.

[13]张丁非, 戴庆伟, 方霖, 等. 温度梯度对镁合金板材轧制影响的数值模拟[J]. 中国科技论文在线, 2009, 4(11): 813-818.

Zhang D F, Dai Q W, Fang L, et al. Numerical simulation of the effect of temperature gradient on magnesium alloy sheet rolling [J]. Science paper Online, 2009, 4(11): 813-818.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9