网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
激光选区熔化WC 12Co复合材料温度场模拟研究
英文标题:Simulation study on temperature field for WC 12Co composite material by selective laser melting
作者:谢英星 姜无疾 吴升富 
单位:中山职业技术学院 
关键词:激光选区熔化 WC 12Co复合材料 温度场 熔池宽度 熔池深度 
分类号:TH142;TG146
出版年,卷(期):页码:2023,48(9):130-141
摘要:

 为提高激光选区熔化WC 12Co硬质复合材料的成形质量,采用有限元仿真软件Ansys 2021R1对SLM成形WC 12Co硬质复合材料过程的温度场进行数值模拟仿真研究,研究成形温度场的温度分布和成形工艺参数(激光功率、扫描速度、扫描间距和基板预热温度)对温度场的影响,为优化WC 12Co硬质复合材料成形提供试验依据。结果表明:激光功率增大,成形区域温度增大,位置点3的峰值温度从3507.47 ℃增大至3837.52 ℃;激光扫描速度增大,成形区域温度降低,位置点5的峰值温度从3592 ℃下降至2897 ℃,峰值温度下降695 ℃;扫描间距的增加使各扫描区域的温度有所降低,位置点3的峰值温度从3330 ℃逐渐降低至3123 ℃。在同一成形工艺参数下,激光扫描前一路径对后一路径有预热作用,随着扫描路径的增加,成形区域的温度呈现逐渐上升趋势。基板预热至120 ℃能够提高熔池的内部温度,减小成形件之间的温度差异,缩小温度梯度差。当激光功率增大时,熔池的宽度和深度随之增大;当激光扫描速度增大时,熔池的宽度先增大后减小,熔池的深度线性反向减小;当扫描间距增大时,熔池的宽度和深度均减小。模拟获得的温度场仿真结论能够大致反映成形试样的表面质量和合金粉末的熔化状态随成形工艺参数变化的趋势。

 To improve the forming quality of WC 12Co hard composites material by selective laser melting (SLM), the numerical simulation study of the temperature field in the forming process of WC 12Co hard composites material by SLM was conducted by finite element simulation software Ansys 2021R1, and the temperature distribution in the forming temperature field and the influences of forming process parameters (laser power, scanning speed, scanning spacing and substrate preheating temperature) on the temperature field were studied,  which provided experimental basis for optimizing the forming of WC 12Co hard composite material. The results show that with the increasing of laser power, the temperature of forming area increases, and the peak temperature of position point 3 increases from 3507.47 ℃ to 3837.52 ℃.  With the increasing of laser scanning speed, the temperature of forming area decreases, the peak temperature of position point 5 decreases from 3592 ℃ to 2897  ℃, and the peak temperature decreases by 695 ℃. With the increasing of scanning spacing, the temperature of each scanning area decreases, and the peak temperature of position point 3 gradually decreases from 3330 ℃ to 3123 ℃. Under the same forming process parameters,  the former path of laser scanning has a pre-heating effect on the latter path, and with the increasing of scanning path, the temperature of forming area shows a gradual upward trend. Pre-heating the substrate to 120 ℃ can increase the internal temperature of molten pool, reduce the temperature difference between the formed parts, and reduce the temperature gradient difference. When the laser power increases, the width and depth of molten pool increase, and when the laser scanning speed increases, the width of molten pool first increases and then decreases, and the depth of molten pool decreases linearly and reversely. With the increasing of scanning spacing, both the width and depth of molten pool decrease. The temperature field simulation conclusion obtained by simulation can roughly reflect the change trend of the surface quality of formed samples and the melting state of alloy powder with the forming process parameters.

基金项目:
广东省自然科学基金面上项目(2020A151501806);广东省普通高校特色创新类项目(2019GKTSCX105,2021KTSCX310);中山职业技术学院高层次人才科研项目(KYG2105)
作者简介:
谢英星(1982-),男,博士,副教授 E-mail:36596530@qq.com
参考文献:

 [1]黄伯云, 韦伟峰, 李松林, 等. 现代粉末冶金材料与技术进展[J]. 中国有色金属学报, 2019, 29(9): 1917-1933.


Huang B Y, Wei W F, Li S L, et al. Development of modern powder metallurgy materials and technology[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1917-1933.

[2]Ivekovic A, Omidvari N, Vrancken B, et al. Selective laser melting of tungsten and tungsten alloys[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 27-32. 

[3]Guimaraes B, Figueiredo D, Femandes C M, et al. Laser machining of WCCO green compacts for cutting tools manufacturing[J]. International Journal of Refractory Metals and Hard Materials, 2019, 81: 316-324.

[4]Wang J, Han Y, Zhao Y, et al. Microstructure and properties of WC12Co cemented carbide fabricated via selective electron beam melting[J]. International Journal of Refractory Metals and Hard Materials, 2022, 106: 105847.

[5]Foteinopoulos P, Papacharalampopoulos A, Stavropoulos P. On thermal modeling of additive manufacturing processes[J]. CIRP Journal of Manufacturing Science and Technology, 2018, 20: 66-83.

[6]Ninpetch P, Kowitwarangkul P, Mahathanabodee S, et al. Computational investigation of thermal behavior and molten metal flow with moving laser heat source for selective laser melting process[J]. Case Studies in Thermal Engineering, 2021, 24: 100860.

[7]Waqar S, Guo K, Sun J. FEM analysis of thermal and residual stress profile in selective laser melting of 316L stainless steel[J]. Journal of Manufacturing Processes, 2021, 66: 81-100.

[8]王国波, 李多生, 叶寅, 等. GH4169合金单道多层SLM成形过程热行为分析[J]. 应用激光, 2021, 41(6): 1257-1264.

Huang G B, Li D S, Ye Y, et al. Thermal behavior analysis of singlechannel multilayer SLM forming process of GH4169 alloy[J]. Applied Laser, 2021, 41(6): 1257-1264.

[9]戴冬华, 顾冬冬, 李雅莉,等. 选区激光熔化WCu复合体系熔池熔体运动行为的数值模拟[J]. 中国激光, 2013,40(11): 82-90.

Dai D H, Gu D D, Li Y L, et al. Numerical simulation of metallurgical behavior of melt pool during selective laser melting of WCu composite power system[J]. Chinese Journal of Lasers, 2013,40(11): 82-90.

[10]Majeed M, Vural M, Raja S, et al. Finite element analysis of thermal behavior in maraging steel during SLM process[J]. Optik, 2020, 208: 164128.

[11]kten K, Biyikoglu A. Development of thermal model for the determination of SLM process parameters[J]. Optics & Laser Technology, 2021, 137: 106825.

[12]Ninpetch P, Kowitwarangkul P, Mahathanabodee S, et al. Computational investigation of thermal behavior and molten metal flow with moving laser heat source for selective laser melting process[J]. Case Studies in Thermal Engineering, 2021, 24: 100860.

[13]Chen Y, Chen H, Chen J Q, et al. Numerical and experimental investigation on thermal behavior and microstructure during selective laser melting of high strength steel[J]. Journal of Manufacturing Processes, 2020, 57: 533-542.

[14]Li Y, Gu D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 2014, 63: 856-867.

[15]Li Z, Yang S, Liu B, et al. Simulation of temperature field and stress field of selective laser melting of multilayer metal powder[J]. Optics & Laser Technology, 2021, 140: 106782.

[16]谭文生. WCCo 合金的密度影响因素及变化范围[J]. 稀有金属与硬质合金, 1988, (3):31-35.

Tan W S. Influencing factors and variation range of WCCo alloy density [J]. Rare Metals and Cemented Carbides, 1988, (3):31-35.

[17]张光亮, 谢文, 黄文亮, 等. WC 粒度分布对WCCo硬质合金力学性能影响的模拟分析[J]. 硬质合金, 2013, (1): 1-7.

Zhang G L, Xie W, Huang W L, et al. Numerical investigation about influence of WC grain distribution on mechanical properties of WCCo cemented carbide[J]. Cemented Carbide, 2013, (1): 1-7.

[18]Conti P, Cianetti F, Pilerci P. Parametric finite elements model of SLM additive manufacturing process[J]. Procedia Structural Integrity, 2018, 8: 410-421.

[19]He K, Zhao X. 3D thermal finite element analysis of the SLM 316L parts with microstructural correlations [J]. Complexity, 2018, 2018: 1-13.

[20]Tawfik S M, Nasrr M N A, El Gamal H A. Finite element modelling for part distortion calculation in selective laser melting [J]. Alexandria Engineering Journal, 2019, 58(1): 67-74.

[21]Li L, Yan L, Cui W, et al. Predictive model for thermal and stress field in selective laser melting processPart I[J]. Procedia Manufacturing, 2019, 39: 539-546.

[22]Liu B, Li B Q, Li Z, et al. Numerical investigation on heat transfer of multilaser processing during selective laser melting of AlSi10Mg[J]. Results in Physics, 2019, 12: 454-459.

[23]Huang W, Zhang Y. Finite element simulation of thermal behavior in singletrack multiplelayers thin wall withoutsupport during selective laser melting [J]. Journal of Manufacturing Processes, 2019, 42: 139-148.

[24]Liu J, Chen J, Zhou L, et al. Role of Co content on densification and microstructure of WCCo cemented carbides prepared by selective laser melting[J]. Acta Metallurgica Sinica: English Letters, 2021, 34(9): 1245-1254.

[25]谢英星, 戚文军, 王成勇,等. 激光选区熔化WC 12Co复合材料成形工艺与性能研究[J]. 应用激光, 2022,42(4):63-71.

Xie Y X, Qi W J, Wang C Y, et al. Study on the forming process and properties of WC 12Co composite by selective laser melting [J]. Applied Laser, 2022, 42(4):63-71.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9