网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
7075-T6高强铝合金温热变形本构方程及热加工图
英文标题:Warm deformation constitutive equation and thermal processing map of 7075-T6 high strength aluminum alloy
作者:彭宇1 杨程1 彭迎娇1 杨浩鑫1 赵升吨2 
单位:1.西安建筑科技大学 2.西安交通大学 
关键词:7075-T6铝合金 温热变形行为 本构方程 热加工图 显微组织 
分类号:TG146.2
出版年,卷(期):页码:2023,48(9):230-238
摘要:

 为了获得7075高强铝合金的温热成形合理变形的工艺参数,采用Gleeble3500热模拟试验机测试7075T6铝合金的应力-应变曲线。研究了该合金在变形温度为150~300 ℃和应变速率为0.01~10 s-1条件下的流变行为,并基于Arrhenius本构方程建立了0.3~0.6应变下7075T6铝合金的热加工图,最后结合金相显微组织验证了热加工图的可靠性和实用性。结果表明:7075T6铝合金对变形温度、应变速率、应变量具有高度敏感性,热形变激活能Q=291.151 kJ·mol-1;修正后的Arrhenius本构方程的拟合结果良好,相关系数r值与平均绝对误差AARE分别为99.65%和5.54%,能较好地预测7075T6铝合金的流变行为;在应变为0.6时,最佳的温热加工安全区域范围为温度为250~300 ℃、应变速率为0.01~0.05 s-1。

 In order to obtain the reasonable deformation process parameters of warm forming for 7075 high strength aluminum alloy, the stress-strain curve of 7075-T6 aluminum alloy was tested by thermal simulation testing machine Gleeble-3500, and the rheological behavior of 7075-T6 aluminum alloy under the conditions of the deformation temperature of 150-300 ℃ and the strain rate of 0.01-10 s-1 was studied. Then, the thermal processing map of 7075-T6 aluminum alloy under the strain of 0.3-0.6 was established based on Arrhenius constitutive equation, and the reliability and practicability of the thermal processing map were verified by metallographic microstructure. The results show that 7075-T6 aluminum alloy is highly sensitive to deformation temperature, strain rate and strain amount, and the thermal deformation activation energy Q is 291.151 kJ·mol-1. The fitting result of the modified Arrhenius constitutive equation is good, and the correlation coefficient r value and the average absolute error AARE are 99.65% and 5.54% respectively, which can better predict the rheological behavior of 7075-T6 aluminum alloy. When the strain is 0.6, the best warm processing safe zone range is the temperature of 250-300 ℃ and the strain rate of 0.01-0.05 s-1. 

基金项目:
国家自然科学基金资助项目(51874226);西安市科技局科技创新引导项目(201805033YD11CG17(10))
作者简介:
作者简介:彭宇(1995-),男,硕士研究生 E-mail:1062015258@qq.com 通信作者:杨程(1976-),男,博士,副教授 E-mail:yang.cheng@stu.xjtu.edu.cn
参考文献:

 [1]罗锐,曹赟,邱宇,等.喷射沉积态AlZnMgCu合金的高温变形行为及组织演变[J].稀有金属,2022,46(2):144-152.


Luo R, Cao Y, Qiu Y, el al.Deformation characteristics and microstructure evolution of spraydeposited AlZnMgCu alloy [J]. Chinese Journal of Rare Metals, 2022,46(2):144-152.

[2]Gupta R K, Kumar V, Anil Krishnan A, el al. Hot deformation behavior of aluminum alloys AA7010 and AA7075 [J]. Journal of Materials Engineering and Performance, 2019, 28(8):1059-9495.

[3]Shi C, Lai J, Chen X G. el al. Microstructural evolution and dynamic softening mechanisms of AlZnMgCu alloy during hot compressive deformation [J]. Materials, 2013, 7(1): 244-264.

[4]陈水生,冯莽,杨志波,等. 7075T6铝合金的高温成形性能和微观组织[J]. 金属热处理, 2021, 46(6): 191-194.

Chen S S, Feng M, Yang Z B, et al. High temperature formability and microstructure of 7075T6 aluminum alloy [J]. Heat Treatment of Metals, 2021, 46(6): 191-194.

[5]丁慧莹, 管延锦, 李玉琦, 等. GGG70L球墨铸铁的高温变形行为及其本构模型建立[J]. 锻压技术, 2022, 47(12): 249-255.

Ding H Y, Guan Y J, Li Y Q, el al. Deformation behavior at high temperature and establishment of constitutive model of GGG70L ductile iron [J]. Forging & Stamping Technology, 2022, 47(12): 249-255.

[6]刘克威, 谭安平. 7075铝合金热变形的组织演化及本构方程研究[J]. 塑性工程学报, 2020, 27(8): 159-165. 

Liu K W, Tan A P. Microstructure evolution and constitutive equation in hot deformation of 7075 aluminum alloy [J]. Journal of Plasticity Engineering, 2020, 27(8): 159-165.

[7]Zhang D N, Qian Q, Shuang G, et al. A modified JohnsonCook model of dynamic tensile behaviors for 7075T6 aluminum alloy [J]. Journal of Alloys & Compounds, 2015, 619: 186-194.

[8]王雷. 铸轧7075铝合金的变形行为及其组织演变的研究 [D]. 济南: 山东大学, 2016.

Wang L. Study on the Hot Deformation Behavior and Microstructural Evolution of 7075 Aluminum Alloy [D]. Jinan: Shandong University, 2016.

[9]杨栋, 陈文琳, 王少阳, 等. 7075铝合金热变形时动态再结晶晶粒度演化模型[J]. 中国有色金属学报, 2013, 23(10): 2747-2753.

Yang D, Chen W L, Wang S Y, et al. Dynamic recrystallization grain size evolution model of 7075 aluminum alloy during hot deformation [J]. The Chinese Journal of Nonferrous Metals Society, 2013, 23(10): 2747-2753.

[10]Jeong H T, Kim H K, Kim W J. Processing maps (with flow instability criterion based on powerlaw breakdown) integrated into finite element simulations for evaluating the hot workability of 7075 aluminum alloy [J]. Materials Today Communications, 2021, 27: 102254. 

[11]Wu H,Wen S P,Huang H,et al. Hot deformation behavior and processing map of a new type AlZnMgErZr alloy[J]. Journal of Alloys & Compounds, 2016, 685: 869-880.

[12]Park S Y, Kim W J. Difference in the hot compressive behavior and processing maps between the ascast and homogenized AlZnMgCu (7075) alloys [J]. Journal of Materials Science & Technology, 2016, 32(7): 660-670.

[13]Yang Y, Zhang Z, Li X, et al. The effects of grain size on the hot deformation and processing map for 7075 aluminum alloy [J]. Materials & Design, 2013, 51: 592-597.

[14]周芃, 朱荣宇, 石婵,等. 基于GTN模型的5A06铝合金温成形损伤建模[J]. 塑性工程学报, 2020, 27(12): 164-169.

Zhou P, Zhu R Y, Shi C, et al. Modeling of warm forming damage of 5A06 aluminum alloy based on GTN model [J]. Journal of Plasticity Engineering, 2020, 27(12): 164-169.

[15]陶志伟, 王雷刚, 杨兴旺,等. 喷射成形7055铝合金回收粉挤压态的热变形行为[J]. 塑性工程学报, 2022, 29(6):87-93.

Tao Z W, Wang L G, Yang X W, et al. Hot deformation behavior of sprayed 7055 aluminum alloy recycled powders as extruded [J]. Journal of Plasticity Engineering, 2022, 29(6): 87-93.

[16]Yin Z, Pan Q, Li B, et al. Characterization of hot deformation behavior of ashomogenized AlCuLiScZr alloy using processing maps [J]. Materials Science & Engineering, 2014, 614:199-206.

[17]沈智, 石一磬, 周英丽,等. 6014铝合金热冲压流变行为的本构模型修正[J]. 锻压技术,2021,46(12):67-73.

Shen Z, Shi Y Q, Zhou Y L, el al. Modification on constitutive model for rheological behavior of 6014 aluminum alloy in hot stamping[J]. Forging & Stamping Technology, 2021, 46(12): 67-73.

[18]仇鹏, 王家毅, 段晓鸽,等. AA7021铝合金热变形行为及微观组织演变机理的研究[J].材料导报,2020,34(8):8106-8112.

Qiu P, Wang J Y, Duan X G, el al. Study on hot deformation behavior and microstructure evolution mechanism of AA7021 aluminum alloy[J].Materials Reports,2020,34(8):8106-8112.

[19]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22-32.

[20]Wei T, Wang Y, Tang Z, et al. The constitutive modeling and processing map of homogenized AlMgSiCuZn alloy[J]. 2021,27:102471.

[21]Mc A, Mra B, Shs B, et al. Study on hot deformation behavior of AISI 414 martensitic stainless steel using 3D processing map [J]. Journal of Manufacturing Processes, 2020, 56: 916-927.

[22]Zhou X, Wang K, Lu S, et al. Flow behavior and 3D processing map for hot deformation of Ti2.7Cu alloy [J]. Journal of Materials Research and Technology, 2020, 9(3):2652-2661.

[23]周琳,刘运玺,陈玮,等.Ti4Al5Mo6Cr5V1Nb合金的热变形行为及热加工图[J].稀有金属,2022,46(1):27-35.

Zhou L, Liu Y X, Chen W, el al. Thermal deformation behavior and processing map of Ti4Al5Mo6Cr5V1Nb alloy [J]. Chinese Journal of Rare Metals, 2022, 46(1):27-35.

[24]Senthilkumar V, Balaji A, Narayanasamy R. Analysis of hot deformation behavior of Al 5083TiC nanocomposite using constitutive and dynamic material models [J]. Materials & Design, 2012, 37: 102-110.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9