网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2219铝合金粗大第二相粒子破碎机理
英文标题:Crushing mechanism on coarse second-phase particles for 2219 aluminum alloy
作者:毛献昌1 2 林土淦1 林海燕1 陈德灯1 何海林2 
单位:1.广西交通职业技术学院 2.中南大学 
关键词:2219铝合金 压缩变形 第二相粒子 破碎机理 变形温度 
分类号:TB31
出版年,卷(期):页码:2023,48(9):248-256
摘要:

 对多向锻造后的2219铝合金进行了高温和中低温压缩试验,研究了2219铝合金长条状和等轴状第二相粒子的破碎行为,揭示了其破碎细化机理。研究结果显示,高温(T=510 ℃)双向压缩时,长条状粒子塑性较好,变形时被压弯,当超过弯曲极限时,粒子发生破裂;当T下降至240 ℃时,长条状粒子脆性增加,大量粒子被脆性折断,细化效果显著提升,粒子主要呈等轴状,等轴状粒子占总结晶相的面积分数从高温时的64%增加至79%。等轴状粒子破碎难度大,高温压缩变形时,主要借助位错的形成和迁移行为实现粒子外围逐渐溶解,尺寸减小;中低温压缩变形时,基体中的位错回复和迁移较慢,易在粒子附近塞积和缠绕,等轴状粒子主要借助位错引起的基体强化作用实现破碎,破碎效果提升。

  The compression tests at high temperature and medium-low temperature of 2219 aluminum alloy after multi-directional forging were carried out, the crushing behavior of elongated and equiaxed second-phase particles for 2219 aluminum alloy was investigated, and the crushing and refining mechanism was revealed. The research results show that when compressed bidirectionally at high temperature (T=510 ℃), the elongated particles have better plasticity, and the particles are bent when deformed and break when the bending limit is exceeded. When T drops to 240 ℃, the brittleness of the elongated particles increases, and a large number of particles are broken by brittleness to improve the refining effect significantly. The particles are mainly equiaxed, and the area fraction of equiaxed particles to the total crystal phase increases from 64% at high temperature to 79%. Due to the difficulty of breaking equiaxed particles, when high temperature compression deformation, the particle periphery is gradually dissolved and the size is reduced mainly through the formation and migration behaviors of dislocation, when medium-low temperature compression deformation, the recovery and migration of dislocation in the matrix are slow and easy to accumulate and entangle near the particles, the equiaxed particles mainly rely on the matrix strengthening effect caused by dislocation to achieve crushing and improve the crushing effect.

基金项目:
国家自然科学基金资助项目(52005518);广西自然科学基金资助项目(2020GXNSFAA159156);广西高校中青年教师科研基础能力提升项目(2023KY1152)
作者简介:
作者简介:毛献昌(1982-),男,博士,副教授 E-mail:mxchlhy@163.com 通信作者:林土淦(1988-),男,硕士,讲师 E-mail:940567356@qq.com
参考文献:

 [1]安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性 [J]. 材料工程, 2020, 48(4): 123-130.


An L H, Yuan S J. Deformation uniformity of 2219 aluminum alloy thinwalled curved parts in stretch forming process [J]. Journal of Materials Engineering, 2020, 48(4): 123-130.

[2]Zhang D, Wang G, Wu A, et al. Study on the inconsistency in mechanical properties of 2219 aluminium alloy TIGwelded joints [J]. Journal of Alloys and Compounds, 2019, 777: 1044-1053.

[3]Babu S, Panigrahi S, JanakiRam G, et al. Cold metal transfer welding of aluminium alloy AA 2219 to austenitic stainless steel AISI 321 [J]. Journal of Materials Processing Technology, 2019, 266: 155-164.

[4]于华民, 董方, 吴运新. 大型铝合金C形截面环轧制过程数值模拟和轧制区成形规律分析 [J]. 锻压技术, 2021, 46(11): 197-206.

Yu H M, Dong F, Wu Y X. Numercal simulation on rolling process and analysis on rolling zone forming law for large aluminum alloy Cshaped corsssection ring [J]. Forging & Stamping Technology, 2021, 46(11): 197-206.

[5]安立辉, 苑世剑. 2219铝合金薄壁曲面拉伸件的变形与强化规律 [J]. 中国有色金属学报, 2020, 30(2): 283-290.

An L H, Yuan S J. Deformation and strength distribution of stretch formed 2219 aluminum alloy thinwalled curved parts [J]. The Chinese Journal of Nonferrous Metals, 2020, 30(2): 283-290.

[6]Zeng X, Fan X G, Li H W, et al. Grain refinement in hot working of 2219 aluminium alloy: On the effect of deformation mode and loading path [J]. Materials Science & Engineering A, 2020, 794: 139905.

[7]马云龙, 高艺航, 陈送义, 等. Fe含量对2219铝合金锻件焊接组织与性能的影响 [J]. 宇航材料工艺, 2020, 4: 77-81.

Ma Y L, Gao Y H, Chen S Y, et al. Effect of Fe content on welding microstructure and properties of 2219 aluminum alloy [J]. Aerospace Materials & Technology, 2020, 4: 77-81.

[8]张曼曼, 朱凯, 张文学, 等. 铸态2219铝合金热压缩变形组织演变规律 [J]. 锻压技术, 2021, 46(1): 191-196.

Zhang M M, Zhu K, Zhang W X, et al. Microstructure evolution law of ascast 2219 aluminum alloy in hot compression deformation[J]. Forging & Stamping Technology, 2021, 46(1): 191-196.

[9]He H L, Yi Y P, Huang S Q, et al. An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties [J]. Journal of Materials Science & Technology, 2019, 35: 55-63.

[10]阳代军, 张文学, 徐坤和, 等. 9 m级超大直径2219铝合金整体环轧制工艺及质量分析 [J]. 热加工工艺, 2019, 48(5): 189-193.

Yang D J, Zhang W X, Xu K H, et al. Rolling process and quality analysis of 9 m ultralarge diameter 2219 aluminum alloy integral ring [J]. Hot Working Technology, 2019, 48(5): 189-193.

[11]文嘉利, 高志华, 高明伟, 等. 电磁搅拌对2219铝合金铸锭组织及环轧性能的影响 [J]. 特种铸造及有色合金, 2020, 40(8): 861-864.

Wen J L, Gao Z H, Gao M W, et al. Effects of electromagnetic stirring on microstructures and ring rolling properties of 2219 aluminium alloy ingot [J]. Special Casting & Nonferrous Alloys, 2020, 40(8): 861-864.

[12]李康, 李晓谦, 李瑞卿. 超声铸造2219铝合金的固溶工艺和Al2Cu相的演变 [J]. 热加工工艺, 2019, 48(2): 167-170.

Li K, Li X Q, Li R Q. Solid solution process and Al2Cu phase evolution of ultrasonic casting 2219 aluminum alloy [J]. Hot Working Technology, 2019, 48(2): 167-170.

[13]Guo W F, Yi Y P, Huang S Q, et al. Effects of deformation temperature on the evolution of secondphase and mechanical properties of large 2219 AlCu alloy rings [J]. Materials Characterization, 2020, 160: 110094.

[14]徐道芬, 陈送义, 余芳, 等. 2219 大规格铸锭成分偏析行为及多向锻-固溶时效热处理对铸锭组织和性能的影响 [J]. 中国有色金属学报, 2017, 27(12): 2451-2459.

Xu D F, Chen S Y, Yu F, et al. Composition segregation behavior of 2219 aluminum alloy ingot with big size and effect of multiaxial forging and solutionaging treatment on microstructure and mechanical properties of ingot [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(12): 2451-2459.

[15]He H L, Yi Y P, Huang S Q, et al. Effects of deformation temperature on secondphase particles and mechanical properties of 2219 AlCu alloy [J]. Materials Science & Engineering A, 2018, 712: 414-423.

[16]钟贞涛, 李瑞卿, 李晓谦, 等. 超声处理对2219大规格铝锭微观组织与宏观偏析的影响 [J]. 工程科学学报, 2017, 39(9):1347-1354.

Zhong Z T, Li R Q,Li X Q,  et al. Effect of ultrasonication on the microstructure and macrosegregation of a large 2219 aluminum ingot [J]. Chinese Journal of Engineering, 2017, 39(9):1347-1354.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9