[1]Jiang Y L, Chen H N, Wu C Z, et al. Thermal ductility and hot cracking for 70 mm thick forge plate and rolling plates of nickel alloy 690 [J]. Rare Metal Materials and Engineering, 2019, 48(3): 0758-0764.
[2]李振兴, 王学军. 镁基汽车电池合金的锻造工艺及组织性能 [J]. 锻压技术, 2021, 46(3): 15-20.
Li Z X, Wang X J. Forging process and microstructure properties of Mg-based automotive battery alloy [J]. Forging & Stamping Technology, 2021, 46(3): 15-20.
[3]齐铭, 安震, 张凯, 等, 热处理对锻压TA15钛合金棒组织和性能的调控 [J]. 锻压技术, 2022, 47(8): 193-199.
Qi M, An Z, Zhang K, et al. Regulation of heat treatment on microstructure and properties of forged TA15 titanium alloy bar [J]. Forging & Stamping Technology, 2022, 47(8): 193-199.
[4]赵民权, 王媛, 董健, 等. TC11合金大圆精锻棒材低倍暗斑分析及挽救措施 [J]. 金属热处理, 2022, 47(5): 266-269.
Zhao M Q, Wang Y, Dong J, et al. Macro-segregation analysis and rescue measure of TC11 alloy large round precision forged bar [J]. Heat Treatment of Metals, 2022, 47(5): 266-269.
[5]于淼. 锻造对12Cr2Ni4A钢棒料性能的影响 [J]. 锻压技术, 2022,47(4): 74-77.
Yu M. Influence of forging on properties of 12Cr2Ni4A steel bar [J]. Forging & Stamping Technology, 2022,47(4): 74-77.
[6]张衡, 张迪, 刘馨宇, 等 锻造及热处理工艺对耐磨钢组织及耐磨性能的影响 [J]. 金属热处理, 2022, 47(7): 138-143.
Zhang H, Zhang D, Liu X Y, et al. Effect of forging and heat treatment on microstructure and wear resistance of wear-resistant steel [J]. Heat Treatment of Metals, 2022,47(7): 138-143.
[7]张涛, 郝丽婷, 田峰, 等, 700 ℃超超临界火电机组用高温材料研究进展 [J]. 机械工程材料, 2016, 40(2): 1-6.
Zhang T, Hao L T, Tian F, et al. Research progress on high temperature materials for 700 ℃ ultra-supercritical coal-fierd unit [J]. Metal for Mechanical Engineering, 2016, 40(2): 1-6.
[8]Rao C V , Srinivas N C S , Sastry G V S ,et al.Effect of microstructure on work hardening behaviour of IN-617 alloy [J]. Materials Science & Engineering A, 2021, 800: 800.
[9]朱怀沈, 聂义宏, 赵帅, 等. 镍基617合金动态再结晶微观组织演变与预测 [J]. 材料工程, 2018, 46(6): 80-87.
Zhua H S, Nie Y H, Zhao S, et al. Microstructure evolution and prediction of alloy 617 during hot deformation based on dynamic recrystallization [J]. Journal of Materials Engineering, 2018, 46(6): 80-87.
[10]田仲良, 陈正宗, 何西扣, 等. 固溶处理对超超临界电站用镍基耐热合金组织及性能的影响 [J]. 金属热处理, 2020, 45(3): 97-102.
Tian Z L, Chen Z Z, He X K, et al. Effect of solution treatment on microstructure and mechanical properties of heat-resisting Ni-based alloy used for ultra-supercritical power plant [J]. Heat Treatment of Metals, 2020, 45(3): 97-102.
[11]杨康, 祝志超, 张雪姣, 等. 镍基617合金的热变形和动态再结晶行为 [J]. 材料热处理学报, 2019, 40(10): 151-157.
Yang K, Zhu Z Z, Zhang X J, et al. Hot deformation and dynamic recrystallization behavior of nickel-based alloy 617 [J]. Transactions of Materials and Heat Treatment, 2019, 40(10): 151-157.
[12]Bhuyan P, Paliwal M, Sarma V S, et al. Precipitate evolution during aging and its individual role on high-temperature hot corrosion response in alloy 617 [J]. Journal of Alloys and Compounds, 2021, 871: 159499.
[13]Zhong Y, Liu X, Lan K C, et al. On the biaxial thermal creep-fatigue behavior of Ni-base alloy 617 at 950 ℃ [J]. International Journal of Fatigue, 2020, 139: 105787.
[14]Tang Y B, Wilkinson A J, Reed R C. Grain boundary serration in nickel-based superalloy nconel 600: Generation and effects on mechanical behavior [J]. Metallurgical and Materials Transactions A, 2018, 49(9): 4324-4342.
[15]Kim H P, Choi M J, Kim S W, et al. Effect of serrated grain boundary on stress corrosion cracking of alloy 600 [J]. Nuclear Engineering and Technology, 2018, 50(7): 1131-1137.
[16]Tang Y T, Karamched P, Liu J, et al. Grain boundary serration in nickel alloy Inconel 600: Quantification and mechanisms [J]. Acta Materialia, 2019,(9): 352-366.
[17]Qiu C L, Andrews P. On the formation of irregular-shaped gamma prime and serrated grain boundaries in a nickel-based superalloy during continuous cooling [J]. Materials Characterization, 2013, 76: 28-34.
[18]Hu H L, Zhao M J, Song Y Y, et al. An approach to regulating grain boundary network by introducing high fraction of Σ3n and serrated grain boundaries simultaneously in Fe-Ni based alloy [J]. Materials Letters, 2022, 323: 132533.
[19]Lee J W, Terner M, Hong H U, et al. A new observation of strain-induced grain boundary serration and its underlying mechanism in a Ni-20Cr binary model alloy [J]. Materials Characterization, 2018, 135: 146-153.
[20]Terner M, Hong H U, Lee J H, et al. On the role of alloying elements in the formation of serrated grain boundaries in Ni-based alloys [J]. International Journal of Materials Research, 2016, 107(3): 229-238.
[21]Lim Y S, Kim D J, Hwang S S, et al. M23C6 precipitation behavior and grain boundary serration in Ni-based alloy 690 [J]. Materials Characterization, 2014,96: 28-39.
[22]秦升学, 王艳, 张弘斌, 等. 固溶处理对GH99合金组织的影响 [J]. 金属热处理, 2020,45(8): 173-178.
Qin S X, Wang Y, Zhang H B, et al. Effect of solution treatment on microstructure of GH99 alloy [J]. Heat Treatment of Metals, 2020,45(8): 173-178.
[23]Mclean D. Grain Boundaries in Metals [M]. Oxford UK:Clarendon Press,1957.
[24]Jiang L, Hu R, Kou H C, et al. The effect of M23C6 carbides on the formation of grain boundary serrations in a wrought Ni-based superalloy [J]. Materials Science and Engineering: A, 2012, 536: 37-44.
[25]Hong H U, Kim I S, Choi B G, et al. The effect of grain boundary serration on creep resistance in a wrought nickel-based superalloy [J]. Materials Science and Engineering: A, 2009, 517(1-2): 125-131.
|