网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
控冷处理对锻造Inconel 617合金晶界组织的影响
英文标题:Effect of controlled cooling treatment on grain boundary structure for forged Inconel 617 alloy
作者:曹峰华1  张浩杰1  马广才2  余鸣亮3 胡红磊1 
单位:1.上海电机学院 机械学院 2. 中国科学院金属研究所 分析测试中心 3. 浙江联大锻压有限公司 
关键词:Inconel 617合金 热处理 锯齿晶界 碳化物 晶界迁移 冷却速度 
分类号:TG156.9
出版年,卷(期):页码:2023,48(10):38-45
摘要:

 以锻造Inconel 617合金为研究对象,通过控冷处理在合金中引入锯齿晶界,在消除锻造残余内应力的同时,实现组织优化;分析了冷却速度对锯齿晶界的影响,揭示了晶界碳化物的类型及结构特征,阐明了锯齿晶界的形成原因。结果表明:控冷处理是获得锯齿晶界的必要环节,且冷却速度越慢,越有利于锯齿晶界的形成。通过将合金在1200 ℃保温1 h后以5 ℃·min-1的冷却速度冷却至700 ℃再水冷,可在合金中引入锯齿晶界,其中锯齿晶界的平均振幅为0.8 μm。此外,锯齿晶界的形成与晶界碳化物有着密切的联系,其主要表现为两种不同的形成机制:一种为晶界的一部分被碳化物钉扎,碳化物之间的晶界发生迁移形成锯齿晶界;另一种为板状碳化物沿晶界生长诱使晶界弯曲。

 For forged Inconel 617 alloy, the serrated grain boundary was introduced into the alloy by controlled cooling treatment to eliminate residual internal stress and achieve structural optimization, and the influences of cooling speed on serrated grain boundaries were analyzed. Then, the types and structural characteristics of carbides at grain boundary were revealed, and the formation reasons of serrated grain boundary were clarified. The results show that the controlled cooling treatment is a necessary step to obtain serrated grain boundaries, and the slower the cooling speed is, the more conducive to formation of serrated grain boundaries. By holding the alloy at 1200 ℃ for 1 h, cooling it to 700 ℃ at a cooling speed of 5 ℃·min-1, and then water cooling, the serrated grain boundaries can be introduced into the alloy, where the average amplitude of the serrated grain boundaries is 0.8 μm. In addition, the formation of serrated grain boundaries is closely related to the carbides at grain boundary, which are mainly manifested by two different formation mechanisms. One is that part of the grain boundary is pinned by carbides, and the grain boundaries between carbides migrate to form serrated grain boundaries. The other is the growth of plate-shaped carbides along the grain boundaries to induce bending of the grain boundaries.

基金项目:
上海市“科技创新行动计划”自然科学基金资助项目(21ZR1424600);上海市科委地方院校能力建设三年行动计划(23010500800,21010500800)
作者简介:
曹峰华(1985-),男,硕士,实验员 E-mail:383329008@163.com
参考文献:

 
[1]Jiang Y L, Chen H N, Wu C Z, et al. Thermal ductility and hot cracking for 70 mm thick forge plate and rolling plates of nickel alloy 690
[J]. Rare Metal Materials and Engineering, 2019, 48(3): 0758-0764.



[2]李振兴, 王学军. 镁基汽车电池合金的锻造工艺及组织性能
[J]. 锻压技术, 2021, 46(3): 15-20.

Li Z X, Wang X J. Forging process and microstructure properties of Mg-based automotive battery alloy
[J]. Forging & Stamping Technology, 2021, 46(3): 15-20.


[3]齐铭, 安震, 张凯, 等, 热处理对锻压TA15钛合金棒组织和性能的调控
[J]. 锻压技术, 2022, 47(8): 193-199.

Qi M, An Z, Zhang K, et al. Regulation of heat treatment on microstructure and properties of forged TA15 titanium alloy bar
[J]. Forging & Stamping Technology, 2022, 47(8): 193-199.


[4]赵民权, 王媛, 董健, 等. TC11合金大圆精锻棒材低倍暗斑分析及挽救措施
[J]. 金属热处理, 2022, 47(5): 266-269.

Zhao M Q, Wang Y, Dong J, et al. Macro-segregation analysis and rescue measure of TC11 alloy large round precision forged bar
[J]. Heat Treatment of Metals, 2022, 47(5): 266-269.


[5]于淼. 锻造对12Cr2Ni4A钢棒料性能的影响
[J]. 锻压技术, 2022,47(4): 74-77.

Yu M. Influence of forging on properties of 12Cr2Ni4A steel bar
[J]. Forging & Stamping Technology, 2022,47(4): 74-77.


[6]张衡, 张迪, 刘馨宇, 等 锻造及热处理工艺对耐磨钢组织及耐磨性能的影响
[J]. 金属热处理, 2022, 47(7): 138-143.

Zhang H, Zhang D, Liu X Y, et al. Effect of forging and heat treatment on microstructure and wear resistance of wear-resistant steel
[J]. Heat Treatment of Metals, 2022,47(7): 138-143.


[7]张涛, 郝丽婷, 田峰, 等, 700 ℃超超临界火电机组用高温材料研究进展
[J]. 机械工程材料, 2016, 40(2): 1-6.

Zhang T, Hao L T, Tian F, et al. Research progress on high temperature materials for 700 ℃ ultra-supercritical coal-fierd unit
[J]. Metal for Mechanical Engineering, 2016, 40(2): 1-6.


[8]Rao C V , Srinivas N C S , Sastry G V S ,et al.Effect of microstructure on work hardening behaviour of IN-617 alloy
[J]. Materials Science & Engineering A, 2021, 800: 800.


[9]朱怀沈, 聂义宏, 赵帅, 等. 镍基617合金动态再结晶微观组织演变与预测
[J]. 材料工程, 2018, 46(6): 80-87.

Zhua H S, Nie Y H, Zhao S, et al. Microstructure evolution and prediction of alloy 617 during hot deformation based on dynamic recrystallization
[J]. Journal of Materials Engineering, 2018, 46(6): 80-87.


[10]田仲良, 陈正宗, 何西扣, 等. 固溶处理对超超临界电站用镍基耐热合金组织及性能的影响
[J]. 金属热处理, 2020, 45(3): 97-102.

Tian Z L, Chen Z Z, He X K, et al. Effect of solution treatment on microstructure and mechanical properties of heat-resisting Ni-based alloy used for ultra-supercritical power plant
[J]. Heat Treatment of Metals, 2020, 45(3): 97-102.


[11]杨康, 祝志超, 张雪姣, 等. 镍基617合金的热变形和动态再结晶行为
[J]. 材料热处理学报, 2019, 40(10): 151-157.

Yang K, Zhu Z Z, Zhang X J, et al. Hot deformation and dynamic recrystallization behavior of nickel-based alloy 617
[J]. Transactions of Materials and Heat Treatment, 2019, 40(10): 151-157.


[12]Bhuyan P, Paliwal M, Sarma V S, et al. Precipitate evolution during aging and its individual role on high-temperature hot corrosion response in alloy 617
[J]. Journal of Alloys and Compounds, 2021, 871: 159499.


[13]Zhong Y, Liu X, Lan K C, et al. On the biaxial thermal creep-fatigue behavior of Ni-base alloy 617 at 950 ℃
[J]. International Journal of Fatigue, 2020, 139: 105787.


[14]Tang Y B, Wilkinson A J, Reed R C. Grain boundary serration in nickel-based superalloy nconel 600: Generation and effects on mechanical behavior
[J]. Metallurgical and Materials Transactions A, 2018, 49(9): 4324-4342.


[15]Kim H P, Choi M J, Kim S W, et al. Effect of serrated grain boundary on stress corrosion cracking of alloy 600
[J]. Nuclear Engineering and Technology, 2018, 50(7): 1131-1137.


[16]Tang Y T, Karamched P, Liu J, et al. Grain boundary serration in nickel alloy Inconel 600: Quantification and mechanisms
[J]. Acta Materialia, 2019,(9): 352-366.


[17]Qiu C L, Andrews P. On the formation of irregular-shaped gamma prime and serrated grain boundaries in a nickel-based superalloy during continuous cooling
[J]. Materials Characterization, 2013, 76: 28-34.


[18]Hu H L, Zhao M J, Song Y Y, et al. An approach to regulating grain boundary network by introducing high fraction of Σ3n and serrated grain boundaries simultaneously in Fe-Ni based alloy
[J]. Materials Letters, 2022, 323: 132533.


[19]Lee J W, Terner M, Hong H U, et al. A new observation of strain-induced grain boundary serration and its underlying mechanism in a Ni-20Cr binary model alloy
[J]. Materials Characterization, 2018, 135: 146-153.


[20]Terner M, Hong H U, Lee J H, et al. On the role of alloying elements in the formation of serrated grain boundaries in Ni-based alloys
[J]. International Journal of Materials Research, 2016, 107(3): 229-238.


[21]Lim Y S, Kim D J, Hwang S S, et al. M23C6 precipitation behavior and grain boundary serration in Ni-based alloy 690
[J]. Materials Characterization, 2014,96: 28-39.


[22]秦升学, 王艳, 张弘斌, 等. 固溶处理对GH99合金组织的影响
[J]. 金属热处理, 2020,45(8): 173-178.

Qin S X, Wang Y, Zhang H B, et al. Effect of solution treatment on microstructure of GH99 alloy
[J]. Heat Treatment of Metals, 2020,45(8): 173-178.


[23]Mclean D. Grain Boundaries in Metals
[M]. Oxford UK:Clarendon Press,1957.


[24]Jiang L, Hu R, Kou H C, et al. The effect of M23C6 carbides on the formation of grain boundary serrations in a wrought Ni-based superalloy
[J]. Materials Science and Engineering: A, 2012, 536: 37-44.


[25]Hong H U, Kim I S, Choi B G, et al. The effect of grain boundary serration on creep resistance in a wrought nickel-based superalloy
[J]. Materials Science and Engineering: A, 2009, 517(1-2): 125-131. 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9