[1]廉冰娴,樊文渊.基于RSM的汽车不锈钢板件冲压模具磨损CAE分析 [J].锻压技术,2022,47(6):113-117.
Lian B X, Fan W Y. CAE analysis on stamping mold wear for automobile stainless steel plate based on RSM [J].Forging & Stamping Technology,2022,47(6): 113-117.
[2]Dambarudhar D, Debasish M, Asish T, et al. Optimisation of drawbead design in sheet metal forming of an part using RSM and LSDYNA [J]. International Journal of Engineering and Technology, 2018, 11(5):1747-1754.
[3]Kleiber M, Knabel J, Rojek J. Response surface method for probabilistic assessment of metal forming failures [J].International Journal for Numerical Methods in Engineering, 2004, 60 (1):51-67.
[4]Kitayama S, Tamada K, Takano M, et al. Numerical optimization of process parameters in stamping forming process for and clamping force using conformal cooling channel [J]. Journal of Manufacturing Processes, 2018, 32: 782-790.
[5]刘强,俞国燕,梅端. 基于Dynaform与RBFNSGAII算法的冲压成形工艺参数多目标优化 [J].塑性工程学报,2020,27(3):16-25.
Liu Q, Yu G Y, Mei D. Multiobjective optimization of stamping forming process parameters based on Dynaform and RBFNSGAII algorithm [J].Journal of Plasticity Engineering, 2020,27(3):16-25.
[6]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法 [S].
GB/T 228.1—2010,Metallic material—Tensile testing—Part1: Method of test at room temperature [S].
[7]季宁,张卫星,于洋洋,等. 基于最优拉丁超立方抽样方法和NSGAII算法的注射成型多目标优化 [J].工程塑料应用,2020,48(3):72-77.
Ji N, Zhang W X,Yu Y Y,et al.MultiObjective optimization of injection molding based on optimal Latin Hypercube sampling method and NSGAII algorithm [J]. Engineering Plastics Application,2020,48(3):72-77.
[8]Zhang F M, Cui H B, Li Z K, et al. Interactive multiobjective optimization of microgrid based on improved NSGAII algorithm [J]. Power System Protection and Control, 2018, 46(12): 24-31.
[9]Qian P Z G. Sliced Latin Hypercube designs [J].Journal of the American Statistical Association,2012,107 (497):393-399.
[10]季宁,张卫星,于洋洋,等.基于Kriging代理模型和MOPSO算法的注塑成型质量多目标优化 [J].塑料工业,2020,48(5):67-71.
Ji N,Zhang W X,Yu Y Y,et al.Multiobjective optimization of injection molding quality based on Kriging agent model and MOPSO algorithm [J]. China Plastics Industry,2020,48(5):67-71.
[11]张俊红,陈孔武,王健,等. 基于EBF神经网络和粒子群算法的注射成型优化设计 [J].中国塑料,2015,29(9):54-59.
Zhang J H,Chen K W,Wang J,et al.Optimization design of injection molding based on EBF neural networkand particle swarm algorithm [J].China Plastics,2015,29(9):54-59.
[12]季宁,张卫星,于洋洋,等. 基于径向基函数神经网络和多岛遗传算法的注射成型质量控制与预测 [J].工程塑料应用,2020,48(4):62-68.
Ji N,Zhang W X,Yu Y Y,et al.Quality control and prediction of injection molding based on RBF Neural Network and MIGA [J]. Engineering Plastics Application,2020,48(4):62-68.
[13]Borhanazad H, Mekhilef S. Optimization of microgrid system using MOPSO [J].Renwable Energy,2014,(71):295-306.
[14]Ghorbani N, Kasaeian A, Toopshekan A,et al.Optimizing a hybrid windPVbattery system using GAPSO and MOPSO for reducing cost and increasing reliability [J].Energy,2017,(154):581-591.
[15]张庆,葛东东,何也能. 基于NSGAII和熵权TOPSIS法的注塑工艺参数多目标优化 [J].塑料工业,2022,50(9):95-100,197.
Zhang Q,Ge D D,He Y N.Multiobjective optimization of injection molding process parameters based on NSGAII algorithm and entropy weight TOPSIS method [J].China Plastics Industry,2022,50(9):95-100,197.
[16]董长青,陈辰,程旭,等.基于 MOPSO 算法与改进熵权 TOPSIS 法的混合动力汽车多目标优化决策 [J].制造业自动化,2018,40 (11): 155-156.
Dong C Q, Chen C, Cheng X, et al.Multiobjective optimization decision for hybrid vehicle based on MOPSO algorithm and improved entropy weight TOPSIS method [J].Manufacturing Automation,2018,40 (11): 155-156.
|