网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
等通道转角挤压对真空吸铸成形纯铝力学性能及微观组织的影响
英文标题:Influence of equal channel angular pressing on mechanical properties and microstructure for pure aluminum formed by vacuum suction casting
作者:李健 何涛 贾东昇 霍元明 张俊杰 陈细林 
单位:上海工程技术大学 
关键词:真空吸铸 等通道转角挤压 纯铝 力学性能 微观组织 
分类号:TG376
出版年,卷(期):页码:2023,48(11):60-66
摘要:

探究了等通道转角挤压(Equal Channel Angular Pressing,ECAP)对真空吸铸成形纯铝的力学性能和微观组织影响,利用显微硬度测试、室温拉伸实验和光学显微镜,研究了真空吸铸成形纯铝经ECAP前后的力学性能和微观组织形貌。结果表明:经过等通道转角挤压后,真空吸铸成形纯铝使变形前的细小晶粒继续被拉长细化,平均晶粒尺寸由31 μm细化为24 μm,并且晶粒细化更加均匀;真空吸铸成形纯铝的硬度和抗拉强度分别为26.6 HV和72.1 MPa,经ECAP强化后达到了41.6 HV和113.2 MPa,分别提升了56.5%和57.0%,且综合力学性能更优。

In order to explore the influences of equal channel angular pressing (ECAP) on the mechanical properties and microstructure of pure aluminum formed by vacuum suction casting, the mechanical properties and microstructure morphology of pure aluminum formed by vacuum suction casting before and after ECAP were studied by microhardness testing, room temperature tensile testing and optical microscope. The results show that after ECAP, the vacuum suction casting make the fine grain of pure aluminum continue to be elongated and refined. The average grain size is refined from 31 μm to 24 μm, and the grain refinement is more uniform. The hardness and tensile strength of pure aluminum formed by vacuum suction casting are 26.6 HV and 72.1 MPa respectively, and after ECAP strengthening, they reach 41.6 HV and 113.2 MPa, which are increased by 56.5% and 57.0% respectively. Moreover, the comprehensive mechanical properties are better.

基金项目:
国家自然科学基金资助项目(52275350);上海市自然科学基金资助项目(20ZR1422100)
作者简介:
作者简介:李健(1999-),男,硕士研究生,E-mail:1304036481@qq.com;通信作者:何涛(1979-),男,博士,教授,E-mail:hetao@sues.edu.cn
参考文献:

[1]Cui L Y, Zhang Z, Chen X G. Development of lightweight Al-based entropy alloys for elevated temperature applications[J]. Journal of Alloys and Compounds, 2023, 938(4): 168619.


[2]El-Danaf E A,Soliman M S,Almajid A A, et al. Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP[J]. Materials Science and Engineering: A, 2007, 458(1-2): 226-234.

[3]Mahallawy N E,Shehata F A,Hameed M A E, et al. Effect of Cu content and number of passes on evolution of microstructure and mechanical properties of ECAPed Al/Cu alloys[J]. Materials Science and Engineering: A, 2009, 517(1-2): 46-50.

[4]郑立静,陈昌麒,周铁涛,等. ECAP细晶机制及对纯铝显微组织和力学性能的影响[J]. 稀有金属材料与工程, 2004, (12): 1325-1328.

Zheng L J, Chen C Q, Zhou T T, et al. Grain-refining mechanism of ECAP and its effect on microstructures and mechanical properties of pure Al [J]. Rare Metal Materials and Engineering, 2004, (12): 1325-1328.

[5]张清龙,王军丽,章震威,等. 挤压速度对等通道转角挤压6061铝合金力学性能的影响[J]. 热加工工艺, 2018, 47(1): 33-37.

Zhang Q L,Wang J L, Zhang Z W, et al. Influence of extrusion speed on mechanical properties of 6061 aluminum alloy extruded by equal channel angular pressing [J]. Hot Working Technology, 2018, 47(1): 33-37.

[6]Ferreira A F, Chrisóstimo W B, Sales R C, et al. Effect of pouring temperature on microstructure and microsegregation of as-cast aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology,2019,104:957-965

[7]Aranda V A, Figueroa I A, González G, et al. Study of the microstructure and mechanical properties of Al-Si-Fe with additions of chromium by suction casting[J]. Journal of Alloys and Compounds, 2021, 853: 157155.

[8]王建国,周中波,王一川,等. TiAl合金铸造工艺数值模拟及分析[J]. 铸造技术, 2009, 30(8): 1054-1057.

Wang J G, Zhou Z B, Wang Y C, et al. Numerical simulation and analysis on casting process of TiAl alloy [J]. Foundry Technology, 2009, 30(8): 1054-1057.

[9]姚婷婷,何涛,王京,等. SiC纳米颗粒表面处理方式对增强铝基复合材料组织和性能的影响[J]. 现代制造工程, 2020, (12): 1-5, 63.

Yao T T, He T, Wang J, et al. Effect of surface treatment of SiC particles on microstructure and properties of aluminum matrix composites reinforced by nanoparticles[J]. Modern Manufacturing Engineering, 2020, (12): 1-5, 63.

[10]王香,聂其东,李竞涛,等. 真空吸铸法制备(HA+β-TCP)/Mg-3Zn相互渗透复合材料的组织和性能[J]. 稀有金属材料与工程, 2018, 47(10): 3080-3087.

Wang X, Nie Q D, Li J T, et al. Microstructure and properties of interpenetrating (HA+β-TCP)/Mg-3Zn composites fabricated by suction casting [J]. Rare Metal Materials and Engineering, 2018, 47(10): 3080-3087.

[11]李新雷,夏瑾,郝启堂. 离心真空吸铸成形叶轮件凝固组织与性能研究[J]. 稀有金属材料与工程, 2018, 47(4): 1319-1324.

Li X L, Xia J, Hao Q T. Solidification microstructure and properties of aluminum alloy impeller produced by centrifugal counter-gravity casting [J]. Rare Metal Materials and Engineering, 2018, 47(4): 1319-1324.

[12]Injor O M, Daramola O O, Adewuyi B O, et al. Grain refinement of Al-Zn-Mg alloy during equal channel angular pressing (ECAP)[J]. Results in Engineering, 2022, 16(299): 100739.

[13]Jia D S, He T, Song M, et al. Effects of equal channel angular pressing and further cold upsetting process to the kinetics of precipitation during aging of 7050 aluminum alloy [J]. Journal of Materials Research and Technology,2023,26(1):5126-5140.

[14]Klu E E, Song D, Li C,et al. Achieving ultra-fine grains and high strength of Mg-9Li alloy via room-temperature ECAP and post rolling[J]. Materials Science and Engineering: A, 2022, 833: 142371.

[15]Yang Z W, Li H, Zhang Y H, et al. ECAP based regulation mechanism of shape memory properties of NiTiNb alloys[J]. Journal of Alloys and Compounds, 2022, 897: 163184.

[16]李姣,杨刚. 挤压道次对航空用工业纯铝ECAP组织和性能的影响[J]. 热加工工艺, 2019, 48(3): 176-178.

Li J, Yang G. Effect of extrusion pass on microstructure and properties of ECAP pure aluminum for aviation [J]. Hot Working Technology, 2019, 48(3): 176-178.

[17]Zha M, Li Y J, Mathiesen R H, et al. Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing[J]. Acta Materialia, 2015, 84: 42-54.

[18]Iwahashi Y, Wang J T, Horita Z J, et al. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials[J]. Scripta Materialia, 1996,35(2):143-146.

[19]Zou D L, He L F, Xiao D W, et al. Microstructure and mechanical properties of fine grained uranium prepared by ECAP and subsequent intermediate heat treatment[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(10): 2749-2756.

[20]Luo L, Yang B H, Yang X R, et al. Effect of room temperature multi-pass ECAP deformation on mechanical properties and precipitation phase distribution of 7075 aluminium alloy[J]. Journal of Central South University, 2023, 30(2): 374-386.

[21]Cardoso K R, Travessa D N, Botta W J, et al. High Strength AA7050 Al alloy processed by ECAP: Microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2011, 528(18): 5804-5811.

[22]Zheng L J, Li H X, Hashmi M F, et al. Evolution of microstructure and strengthening of 7050 Al alloy by ECAP combined with heat-treatment[J]. Journal of Materials Processing Technology, 2006, 171(1): 100-107.

[23]Qiang M, Yang X R, Liu X Y, et al. Effects of initial grain size on microstructure and properties of pure Ti processed by ECAP[J]. Rare Metal Materials and Engineering, 2022, 51(6): 1949-1956.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9