[1]李连诗,韩观昌.小型无缝钢管生产(上册)[M].北京:冶金工业出版社,1989.
Li L S,Han G C. Production of Small Seamless Steel Pipe(Volume 1)[M].Beijing: Metallurgical Industry Press,1989.
[2]Lee D, Lee Y. Application of neural-network for improving accuracy of roll force model in hot-rolling mill[J]. IFAC Proceedings Volumes, 2000, 33(22):227-231.
[3]刘欣玉,潘露,帅美荣.基于Matlab的BP神经网络轧制力预报模型及应用[J].重庆科技学院学报:自然科学版,2016,18(6):96-98,103.
Liu X Y, Pan L, Shuai M R. Prediction model and its application of BP neural network rolling force based on MATLAB [J]. Journal of Chongqing University of Science and Technology: Natural Science Edition,2016,18(6):96-98,103.
[4]杨景明,闫晓莹,顾佳琪,等.基于改进粒子群优化RBF神经网络的轧制力预报[J].矿冶工程,2014,34(6):110-113,118.
Yang J M, Yan X Y, Gu J Q, et al. Rolling force prediction based on improved particle swarm optimization-RBF neural network [J]. Mining and Metallurgy Engineering,2014,34(6): 110-113,118.
[5]陈鑫, 朱明杰, 吴敏,等. 结合机理计算与神经网络预测的无缝钢管轧制力建模[J]. 冶金自动化, 2015, 39(4):32-37.
Chen X, Zhu M J, Wu M, et al. Rolling force modeling for seamless steel pipe combining mechanism model and neural network prediction [J]. Metallurgical Industry Automation, 2015, 39(4):32-37.
[6]王清华 , 加世滢, 胡建华, 等.基于GRA的PSO-BP神经网络斜轧穿孔管形预测[J].锻压技术,2022,47(8):88-94.
Wang Q H, Jia S Y, Hu J H. Prediction of pipe shape in cross-rolled piercing by PSO-BP neural network based on GRA [J]. Forging & Stamping Technology, 2022,47 (8):88-94.
[7]何垚东, 李旭, 丁敬国,等. 融合轧制机理和深度学习的带钢精轧宽度预测[J]. 轧钢, 2022,(2):76-81,86.
He Y D, Li X, Ding J G, et al. Hot finishing rolling strip width predicting model based on rolling mechanism and deep learning [J]. Steel Rolling, 2022,(2):76-81,86.
[8]马威, 李维刚, 赵云涛,等. 基于深度学习的热连轧轧制力预测[J]. 钢铁研究学报, 2019, 31(9):805-815.
Ma W, Li W G, Zhao Y T, et al. Prediction of hot-rolled roll force based on deep learning [J]. Journal of Iron and Steel Research, 2019, 31(9):805-815.
[9]孙士秀.鞍钢140自动轧管机组穿孔机调整参数的确定[J].鞍钢技术,1982,(4):180-184.
Sun S X. Determination of adjustment parameters of puncher in Angang 140 automatic tube rolling unit [J]. Angang Technology,1982,(4):180-184.
[10]李连诗. 钢管塑性变形原理(上册)[M]. 北京:冶金工业出版社, 1985.
Li L S. Principle of Plastic Deformation of Steel Pipe (Volume 1)[M]. Beijing: Metallurgical Industry Press, 1985.
[11]马湧, 王晓鹏, 马莎莎. 基于Keras深度学习框架下BP神经网络的热轧带钢力学性能预测[J]. 冶金自动化, 2019,43(2):6-10.
Ma Y, Wang X P, Ma S S. Prediction of mechanical properties of hot rolled strip steel based on BP neural network under Keras deep learning framework [J]. Metallurgical Industry Automation, 2019,43(2):6-10.
[12]魏立新, 魏新宇, 孙浩,等. 基于深度网络训练的铝热轧轧制力预报[J]. 中国有色金属学报, 2018, 28(10):128-134.
Wei L X, Wei X Y, Sun H, et al. Prediction of aluminum hot rolling force based on deep network [J]. The Chinese Journal of Nonferrous Metals, 2018, 28(10):128-134.
[13]姬壮伟. 基于Pytorch 的神经网络优化算法研究 [J]. 山西大同大学学报: 自然科版,2020,36(6):51-53,58.
Ji Z W. Research on neural network optimization algorithm based on Pytorch [J]. Journal of Shanxi Datong University: Natural Science Edition, 2019,36(6):51-53,58.
[14]胡石雄. 基于深度学习的热轧带钢力学性能预报[D]. 武汉:武汉科技大学, 2019.
Hu S X.Mechanical Property Prediction of Hot Rolled Strip Based on Deep Learning[D].Wuhan:Wuhan University of Science and Technology, 2019.
|