[1]Adanur S, Jayswal A.Filtration mechanisms and manufacturing methods of face masks:An overview[J].Journal of Industrial Textiles,2022,51(S3):3683S-3717S.
[2]沈刚,赵浩松,郭峰,等.基于Houdini的VEX程序化建模高效搭建数字孪生虚拟工厂[J].智能制造,2021,(4):91-96,101.
Shen G,Zhao H S,Guo F,et al. Houdini-based VEX procedural modeling for efficiently building digital twin virtual factories[J].Intelligent Manufacturing, 2021,(4):91-96,101.
[3]GB/T 40373—2021,一次性口罩制造包装生产线通用技术要求[S].
GB/T 40373—2021, Single-use face mask manufacturing and packaging production line—General technical requirements[S].
[4]孟松鹤,叶雨玫,杨强,等.数字孪生及其在航空航天中的应用[J].航空学报,2020,41(9):1-12.
Meng S H, Ye Y M, Yang Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 1-12.
[5]Tuegel E J, Ingraffea A R, Eason T G, et al.Reengineering aircraft structural life prediction using a digital twin[J].International Journal of Aerospace Engineering,2011,2011:1-14.
[6]Grieves M. Digital twin: Manufacturing excellence through virtual factory replication[J]. White Paper, 2014, 1(2014): 1-7.
[7]Zhu Z X, Xi X L, Xu X, et al. Digital twin-driven machining process for thin-walled part manufacturing[J]. Journal of Manufacturing Systems,2021,59:453-466.
[8]陶飞,刘蔚然,张萌,等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统,2019,25(1):1-18.
Tao F, Liu W R, Zhang M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
[9]陶飞,张辰源,戚庆林,等.数字孪生成熟度模型[J].计算机集成制造系统,2022,28(5):1267-1281.
Tao F, Zhang C Y, Qi Q L, et al. Digital twin maturity model[J]. Computer Integrated Manufacturing Systems, 2022, 28(5): 1267-1281.
[10]陆剑峰,夏路遥,张浩,等.制造企业数字孪生生态系统的研究与应用[J].计算机集成制造系统, 2022,28(8):2273-2290.
Lu J F, Xia L Y, Zhang H, et al. Research and application of manufacturing enterprises digital twin ecosystem[J]. Computer Integrated Manufacturing Systems, 2022,28(8):2273-2290.
[11]Sprovieri J. Automation boosts production of masks[J]. Assembly,2021,64(10):21.
[12]蔡文站,田建艳,王书宇,等.基于NXMCD与TIA的机器人打磨联合虚拟调试研究[J].现代制造工程,2022,(7):37-42,120.
Cai W Z, Tian J Y, Wang S Y, et al. Research of joint virtual commissioning of robotic grinding based on NX MCD and TIA[J]. Modern Manufacturing Engineering, 2022, (7): 37-42, 120.
[13]侯星宇,赵飞,王骏.基于MCD-TIA的换刀装置机电虚拟调试[J].煤矿机械,2022,43(6):75-77.
Hou X Y, Zhao F, Wang J. Electromechanical virtual commissioning of tool changer based on MCD-TIA[J]. Coal Mine Machinery, 2022, 43(6): 75-77.
[14]赵林,吴双,张可义,等.基于NXMCD的堆垛机机电概念设计[J].制造业自动化,2021,43(11):114-116.
Zhao L, Wu S, Zhang K Y, et al. NX MCD-based mechatronic concept design for stacker cranes[J]. Manufacturing Automation, 2021, 43(11): 114-116.
[15]代小龙,杨丹.基于NXMCD的冲压生产线运动仿真研究[J].模具工业,2021,47(10):8-11,33.
Dai X L, Yang D. Research on motion simulation of stamping production line based on NXMCD[J]. Die & Mould Industry, 2021, 47(10): 8-11, 33.
[16]彭宇升,孙勇,凌云汉.航空锻造单元数字孪生系统构建及应用[J].锻压技术,2022,47(4):51-61.
Peng Y S, Sun Y, Ling Y H. Construction and application of digital twin system for aviation forging cell[J]. Forging & Stamping Technology, 2022, 47(4): 51-61.
[17]陈江明,贾锐,段辉.BP神经网络在涡轴发动机参数换算中的应用[J].制造业自动化,2022,44(7):31-35.
Chen J M, Jia R, Duan H. Application of BP neural networkin performance parameter correction of turboshaft engine[J]. Manufacturing Automation, 2022, 44(7): 31-35.
[18]胡浩帆.利用BP神经网络进行柴油机磨损故障监测[J].广东造船,2022,41(3):82-85.
Hu H F. Wear degree diagnosis of diesel engine parts[J]. Guangdong Shipbuilding, 2022, 41(3): 82-85.
[19]吴雁,王晓军,何勇,等.数字孪生在制造业中的关键技术及应用研究综述[J].现代制造工程,2021,(9):137-145.
Wu Y, Wang X J, He Y, et al. Review on the technology and application of digital twin in manufacturing industry[J]. Modern Manufacturing Engineering, 2021,(9): 137-145.
[20]李浩,王昊琪,刘根,等.工业数字孪生系统的概念、系统结构与运行模式[J].计算机集成制造系统,2021,27(12):3373-3390.
Li H, Wang H Q, Liu G, et al. Concept,system structure and operating mode of industrial digital twin system[J]. Computer Integrated Manufacturing Systems, 2021, 27(12): 3373-3390.
[21]陶飞,张萌,程江峰,等.数字孪生车间——一种未来车间运行新模式[J].计算机集成制造系统,2017,23(1):1-9.
Tao F, Zhang M, Cheng J F, et al. Digital twin workshop:A new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 1-9.
[22]张淑华,王文权.基于BP神经网络的前轴锻造工艺优化[J].热加工工艺,2020,49(19):115-117.
Zhang S H, Wang W Q. Forging process optimization of front shaft based on BP neural network[J]. Hot Working Technology, 2020, 49(19): 115-117.
[23]张亚敏,姜永亮.基于神经网络算法的铝基复合材料搅拌铸造工艺优化[J].热加工工艺,2021,50(18):91-94.
Zhang Y M, Jiang Y L. Optimization of stirring casting process for aluminum matrix composites based on neural network algorithm[J]. Hot Working Technology, 2021, 50(18): 91-94.
[24]王彦飞,朱悉铭,张明志,等.基于前馈神经网络的等离子体光谱诊断方法[J].物理学报,2021,70(9):155-166.
Wang Y F, Zhu X M, Zhang M Z, et al. Plasma optical emission spectroscopy based on feedforward neural network[J]. Acta Physica Sinica, 2021, 70(9): 155-166.
|