[1]张晓丽. 考虑能耗和模糊交货期的柔性作业车间动态调度研究 [D]. 邯郸: 河北工程大学, 2019.
Zhang X L. Research on Dynamic Scheduling of Flexible Job Shop Considering Energy Consumption and Fuzzy Delivery Time [D]. Handan: Hebei University of Engineering, 2019.
[2]张守京,杜昊天,侯天天.求解多目标双资源柔性车间调度问题的改进NSGA-Ⅱ算法[J].机械科学与技术,2022,41(5):771-778.
Zhang S J, Du H T, Hou T T. An improved NSGA-II algorithm for solving multi-objective dual resource constrained flexible job shop scheduling problem [J]. Mechanical Science and Technology for Aerospace Engineering, 2022,41(5):771-778.
[3]吴定会, 孔飞, 田娜, 等. 教与同伴学习粒子群算法求解多目标柔性作业车间调度问题 [J]. 计算机应用, 2015, 35(6): 1617-1622,1627.
Wu D H, Kong F, Tian N, et al. Teaching and peer-learning particle swarm optimization for multi-objective flexible job-shop scheduling problem [J]. Journal of Computer Applications, 2015, 35(6): 1617-1622,1627.
[4]Wang L, Zhou G, Xu Y, et al. An effective artificial bee colony algorithm for the flexible job-shop scheduling problem [J]. The International Journal of Advanced Manufacturing Technology, 2012, 60:303-315.
[5]吕媛媛, 樊坤, 瞿华, 等. 多目标粒子群算法求解混合多处理机任务作业车间调度问题研究 [J]. 小型微型计算机系统, 2022, 43(1): 218-224.
Lyu Y Y, Fan K, Qu H, et al. Research on multi-objective particle swarm algorithm for solving hybrid job-shop scheduling with multiprocessor task [J]. Journal of Chinese Computer Systems, 2022, 43(1): 218-224.
[6]黎阳, 李新宇, 牟健慧. 基于改进模拟退火算法的大规模置换流水车间调度 [J]. 计算机集成制造系统, 2020, 26(2): 366-375.
Li Y, Li X Y, Mou J H. Large-scale permutation flowshop scheduling method based on improved simulated annealing algorithm [J]. Computer Integrated Manufacturing Systems, 2020, 26(2): 366-375.
[7]Hansen P, Mladenovic' N, Moreno Pérez J A. Variable neighbourhood search: Methods and applications [J]. Annals of Operations Research, 2010, 175: 367-407.
[8]王春, 张明, 纪志成, 等. 基于遗传算法的多目标动态柔性作业车间调度 [J]. 系统仿真学报, 2017, 29(8): 1647-1657.
Wang C, Zhang M, Ji Z C, et al. Genetic algorithm for solving multi-objective dynamic flexible job shop scheduling [J]. Journal of System Simulation, 2017, 29(28): 1647-1657.
[9]王小梅, 任伟娜, 吴琼宇. 基于遗传算法的柔性冲压车间生产调度多目标优化 [J]. 锻压技术, 2021, 46(10): 203-209.
Wang X M, Ren W N, Wu Q Y. Multi-object optimization on flexible stamping workshop production schedulingbased on genetic algorithm [J]. Forging & Stamping Technology, 2021, 46(10): 203-209.
[10]周春生, 刘志峰, 黄海鸿, 等. 基于遗传算法的冲压车间节能调度优化研究 [J]. 制造业自动化, 2018, 40(5): 58-63,98.
Zhou C S, Liu Z F,Huang H H, et al. Energy-saving scheduling optimization study based on genetic algorithm in pressing job-shop [J]. Manufacturing Automation, 2018, 40(5): 58-63,98.
[11]刘世平, 刘武发. 冲压车间调度的动态拥挤度NSGA-Ⅱ多目标优化方法 [J]. 锻压技术, 2021, 46(1): 76-82.
Liu S P, Liu W F. Multi-object optimization method on stamping workshop scheduling based on dynamic congestion degree NSGA-II algorithm [J]. Forging & Stamping Technology, 2021, 46(1): 76-82.
[12]朱先萌, 姜兆亮, 魏清月, 等. 多品种小批量产品冲压计划排程多目标优化 [J]. 计算机集成制造系统, 2017, 23(9): 1907-1916.
Zhu X M, Jiang Z L, Wei Q Y, et al. Multi-objective optimization for stamping plan scheduling of multi-varieties and small-batch products [J]. Computer Integrated Manufacturing Systems, 2017, 23(9): 1907-1916.
[13]陈帆. 基于能耗优化的冲压车间调度问题研究 [D] . 合肥: 合肥工业大学, 2018.
Chen F. Research on Stamping Workshop Scheduling Problem Based on Energy Consumption Optimization [D]. Hefei: Hefei University of Technology, 2018.
[14]Salido M A, Escamilla J, Barber F, et al. Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems [J]. AI EDAM, 2016, 30(3): 300-312.
[15]张志鹏, 黄明. 基于改进多目标遗传算法求解混合流水车间调度问题 [J]. 计算机应用与软件, 2015, 32(10): 291-293,314.
Zhang Z P, Huang M. Solving hybrid flow-shop scheduling based on improved multi-objective genetic algorithm [J]. Computer Applications and Software, 2015, 32(10): 291-293,314.
|