网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于改进NSGA-II算法的高维多目标柔性冲压车间生产调度优化
英文标题:Production scheduling optimization on high dimensional multi-objective flexible stamping workshop based on improved NSGA-II algorithm
作者:唐艺军1 王艳灵1 孙浩强2 
单位:1.辽宁工程技术大学 工商管理学院 2. 辽宁工程技术大学 电子与信息工程学院 
关键词:柔性冲压车间 高维多目标 NSGA-II算法 生产调度 车间总能耗 
分类号:TH186
出版年,卷(期):页码:2023,48(11):204-211
摘要:

为了优化柔性冲压车间的生产调度、减少车间的生产能耗、实现绿色可持续发展,以车间总能耗、最大完工时间、总拖期、设备总负载最小为目标,建立了高维多目标柔性车间调度模型。提出改进的二代非支配排序遗传算法NSGA-II,该算法优化了局部搜索操作、精英选择策略、交叉和变异概率。根据柔性冲压车间的生产实例,利用传统和改进的NSGA-II算法分别对4个目标函数进行求解,并对各目标的优化迭代过程进行对比,验证了改进算法的有效性。同时,采用优劣解距离法选取一个调度方案,与基于传统NSGA-II算法求出的生产调度方案相比,改进算法得出的调度方案的车间总能耗降低了22.1%、最大完工时间缩短了14.8%、设备总负载减少了11.6%。

In order to optimize the production scheduling of flexible stamping workshop, reduce the production energy consumption of workshop, and achieve green and sustainable development, a high dimensional multi-objective flexible workshop scheduling model was established with the goal of minimizing the total energy consumption of workshop, the maximum completion time, the total delay time and the total equipment load, and an improved second-generation non-dominated sorting genetic algorithm NSGA-II was proposed, which optimized the local search operations, elitist selection strategy, crossover and variance probabilities. Then, the four objective functions were solved by the conventional and improved NSGA-II algorithms based on the production example of flexible stamping workshop, and the effectiveness of the improved algorithm was verified by comparing the optimization iterative process of each objective. At the same time, a scheduling scheme was selected by using the technique for order preference by similarity to an ideal solution, compared with the production scheduling scheme based on the traditional NSGA-II algorithm, the scheduling scheme obtained by the improved algorithm reduced the total energy consumption of workshop by 22.1%, the maximum completion time was shortened by 14.8%, and the total equipment load was reduced by 11.6%.

基金项目:
辽宁省社科基金(L18ASZ002);煤炭部教改项目(2021MXJG116)
作者简介:
作者简介:唐艺军(1974-),男,硕士,副教授,E-mail:38831574@qq.com;通信作者:王艳灵(1998-),女,硕士研究生,E-mail:yanl3017@163.com
参考文献:

[1]张晓丽. 考虑能耗和模糊交货期的柔性作业车间动态调度研究 [D]. 邯郸: 河北工程大学, 2019.


Zhang X L. Research on Dynamic Scheduling of Flexible Job Shop Considering Energy Consumption and Fuzzy Delivery Time [D]. Handan: Hebei University of Engineering, 2019.

[2]张守京,杜昊天,侯天天.求解多目标双资源柔性车间调度问题的改进NSGA-Ⅱ算法[J].机械科学与技术,2022,41(5):771-778.

Zhang S J, Du H T, Hou T T. An improved NSGA-II algorithm for solving multi-objective dual resource constrained flexible job shop scheduling problem [J]. Mechanical Science and Technology for Aerospace Engineering, 2022,41(5):771-778.

[3]吴定会, 孔飞, 田娜, 等. 教与同伴学习粒子群算法求解多目标柔性作业车间调度问题 [J]. 计算机应用, 2015, 35(6): 1617-1622,1627.

Wu D H, Kong F, Tian N, et al. Teaching and peer-learning particle swarm optimization for multi-objective flexible job-shop scheduling problem [J]. Journal of Computer Applications, 2015, 35(6): 1617-1622,1627.

[4]Wang L, Zhou G, Xu Y, et al. An effective artificial bee colony algorithm for the flexible job-shop scheduling problem [J]. The International Journal of Advanced Manufacturing Technology, 2012, 60:303-315.

[5]吕媛媛, 樊坤, 瞿华, 等. 多目标粒子群算法求解混合多处理机任务作业车间调度问题研究 [J]. 小型微型计算机系统, 2022, 43(1): 218-224.

Lyu Y Y, Fan K, Qu H, et al. Research on multi-objective particle swarm algorithm for solving hybrid job-shop scheduling with multiprocessor task [J]. Journal of Chinese Computer Systems, 2022, 43(1): 218-224.

[6]黎阳, 李新宇, 牟健慧. 基于改进模拟退火算法的大规模置换流水车间调度 [J]. 计算机集成制造系统, 2020, 26(2): 366-375.

Li Y, Li X Y, Mou J H. Large-scale permutation flowshop scheduling method based on improved simulated annealing algorithm [J]. Computer Integrated Manufacturing Systems, 2020, 26(2): 366-375.

[7]Hansen P, Mladenovic' N, Moreno Pérez J A. Variable neighbourhood search: Methods and applications [J]. Annals of Operations Research, 2010, 175: 367-407.

[8]王春, 张明, 纪志成, 等. 基于遗传算法的多目标动态柔性作业车间调度 [J]. 系统仿真学报, 2017, 29(8): 1647-1657.

Wang C, Zhang M, Ji Z C, et al. Genetic algorithm for solving multi-objective dynamic flexible job shop scheduling [J]. Journal of System Simulation, 2017, 29(28): 1647-1657.

[9]王小梅, 任伟娜, 吴琼宇. 基于遗传算法的柔性冲压车间生产调度多目标优化 [J]. 锻压技术, 2021, 46(10): 203-209.

Wang X M, Ren W N, Wu Q Y. Multi-object optimization on flexible stamping workshop production schedulingbased on genetic algorithm [J]. Forging & Stamping Technology, 2021, 46(10): 203-209.

[10]周春生, 刘志峰, 黄海鸿, 等. 基于遗传算法的冲压车间节能调度优化研究 [J]. 制造业自动化, 2018, 40(5): 58-63,98.

Zhou C S, Liu Z F,Huang H H, et al. Energy-saving scheduling optimization study based on genetic algorithm in pressing job-shop [J]. Manufacturing Automation, 2018, 40(5): 58-63,98.

[11]刘世平, 刘武发. 冲压车间调度的动态拥挤度NSGA-Ⅱ多目标优化方法 [J]. 锻压技术, 2021, 46(1): 76-82.

Liu S P, Liu W F. Multi-object optimization method on stamping workshop scheduling based on dynamic congestion degree NSGA-II algorithm [J]. Forging & Stamping Technology, 2021, 46(1): 76-82.

[12]朱先萌, 姜兆亮, 魏清月, 等. 多品种小批量产品冲压计划排程多目标优化 [J]. 计算机集成制造系统, 2017, 23(9): 1907-1916.

Zhu X M, Jiang Z L, Wei Q Y, et al. Multi-objective optimization for stamping plan scheduling of multi-varieties and small-batch products [J]. Computer Integrated Manufacturing Systems, 2017, 23(9): 1907-1916.

[13]陈帆. 基于能耗优化的冲压车间调度问题研究 [D] . 合肥: 合肥工业大学, 2018.

Chen F. Research on Stamping Workshop Scheduling Problem Based on Energy Consumption Optimization [D]. Hefei: Hefei University of Technology, 2018.

[14]Salido M A, Escamilla J, Barber F, et al. Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems [J]. AI EDAM, 2016, 30(3): 300-312.

[15]张志鹏, 黄明. 基于改进多目标遗传算法求解混合流水车间调度问题 [J]. 计算机应用与软件, 2015, 32(10): 291-293,314.

Zhang Z P, Huang M. Solving hybrid flow-shop scheduling based on improved multi-objective genetic algorithm [J]. Computer Applications and Software, 2015, 32(10): 291-293,314.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9