[1]应俊龙, 巢昺轩, 蒋克全, 等. 超高强度钢的发展及展望 [J]. 新技术新工艺, 2018, (12): 1-4.
Ying J L, Chao B X, Jiang K Q, et al. Development and prospects of ultra high strength steel [J]. New Technology & New Processes, 2018, (12): 1-4.
[2]赵博, 许广兴, 贺飞, 等. 飞机起落架用超高强度钢应用现状及展望 [J]. 航空材料学报, 2017, 37(6): 1-6.
Zhao B, Xu G X, He F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear [J]. Journal of Aeronautical Materials, 2017, 37 (6): 1-6.
[3]陈刚, 姚远超, 贾寓真, 等. 30Cr4MoNiV 超高强度钢热变形本构方程的构建与优化 [J]. 材料导报, 2022, 36(21): 194-200.
Chen G, Yao Y C, Jia Y Z, et al. Construction and optimization of hot deformation constitutive equation of 30Cr4MoNiV ultra-high-strength steel [J]. Material Repopts, 2022, 36 (21):194-200.
[4]柳木桐, 钟平, 刘大博, 等. 超高强度不锈钢热变形行为及加工图 [J]. 航空材料学报, 2022, 42(4): 49-56.
Liu M T, Zhong P, Liu D B, et al. Hot deformation behavior and processing map of ultra-high strength stainless steel [J]. Journal of Aeronautical Materials, 2022, 42 (4): 49-56.
[5]宁静, 王敖, 苏杰, 等. 新型中合金超高强度钢的热变形行为 [J]. 锻压技术, 2022, 47(12): 234-239.
Ning J, Wang A, Su J, et al. Thermal deformation behavior on new medium alloy ultra-high strength steel [J]. Forging & Stamping Technology, 2022, 47 (12): 234-239.
[6]任书杰, 罗飞, 田野, 等. A100 超高强度钢的流变应力曲线修正与唯象本构关系 [J]. 材料工程, 2019, 47(6): 144-151.
Ren S J, Luo F, Tian Y, et al. Flow stress curve correction and phenomenological constitutive relationship of A100 ultra-high strength steel [J]. Journal of Materials Engineering, 2019, 47 (6): 144-151.
[7]Wang H, Liu D, Wang J G, et al. Characterization of hot deformation behavior of 30Si2MnCrMoVE low-alloying ultra-high-strength steel by constitutive equations and processing maps [J]. Journal of Iron and Steel Research International, 2020, 27(7): 807-819.
[8]Zhong L P, Wang B, Hu C D, et al. Hot deformation behavior and dynamic recrystallization of ultra high strength steel [J]. Metals, 2021, 11(8): 1239.
[9]匡旭光, 杨俊. 热处理工艺对硬质合金带锯条背材 RM80 钢组织和性能的影响 [J]. 特殊钢, 2018, 39(6): 54-57.
Kuang X G, Yang J. Effect of heat treatment process on microstructure and properties of base steel RM80 for cemented carbide bandsaw blade [J]. Special Steel, 2018, 39 (6): 54-57.
[10]卢斌, 易丹青, 刘沙, 等. 深冷处理对双金属带锯条基体用 Rm80 钢的影响 [J]. 热加工工艺, 2000, (1): 25-27.
Lu B, Yi D Q, Liu S, et al. The effect of cryogenic treatment on the properties of Rm80 steels as the base of bimetal saw [J]. Hot Working Technology, 2000, (1): 25-27.
[11]Dong J, Li C, Liu C X, et al. Hot deformation behavior and microstructural evolution of Nb-V-Ti microalloyed ultra-high strength steel [J]. Journal of Materials Research, 2017, 32(19): 3777-3787.
[12]Wang L, Li Y Z, Hu X, et al. Hot deformation behavior and 3D processing map of super austenitic stainless steel containing 7Mo-0.46 N-0.02 Ce: Effect of the solidification direction orientation of columnar crystal to loading direction [J]. Journal of Materials Research and Technology, 2021, 13: 618-634.
[13]Wang K, Wen D X, Li J J, et al. Hot deformation behaviors of low-alloyed ultrahigh strength steel 30CrMnSiNi2A: Microstructure evolution and constitutive modeling [J]. Materials Today Communications, 2021, 26: 102009.
[14]Xu H J, Hu W Q, Kang C, et al. Microstructural evolution and hot deformation behavior of lean duplex stainless steel 2101 [J]. ISIJ International, 2021, 61(3): 967-974.
[15]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metallurgical Transactions A, 1984, 15: 1883-1892.
[16]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[17]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control [J]. International Materials Reviews, 1998, 43(6): 243-258.
[18]Quan G Z, Liu Q, Zhao J, et al. Determination of dynamic recrystallization parameter domains of Ni80A superalloy by enhanced processing maps [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(7): 1449-1464.
[19]Murty S V S N, Rao B N. Ziegler′s criterion on the instability regions in processing maps [J]. Journal of Materials Science Letters, 1998, 17(14): 1203-1205.
[20]Ghadar S, Momeni A, Tolaminejad B, et al. A comparative study on the hot deformation behavior of 410 stainless and K100 tool steels [J]. Materials Science and Engineering: A, 2019, 760: 394-406.
[21]李宁. 低合金高强度钢热变形行为及微观组织演变研究 [D]. 哈尔滨:哈尔滨工程大学, 2021.
Li N. Study on Hot Deformation Behavior and Microstructure Evolution of High Strength Low Alloy Steel [D]. Harbin:Harbin Engineering University, 2021.
[22]Najafi S Z, Momeni A, Jafarian H R, et al. Recrystallization, precipitation and flow behavior of D3 tool steel under hot working condition [J]. Materials Characterization, 2017, 132: 437-447.
[23]周慧敏. 30CrMnSiNi2A 高强钢热变形行为研究 [D]. 重庆:重庆大学, 2019.
Zhou H M. Study on Hot Formability of 30CrMnSiNi2A High Strength Steel [D]. Chongqing:Chongqing University, 2019.
[24]段旭斌. 工程机械用42CrMo截齿的热变形及热处理工艺研究 [D].镇江:江苏大学, 2022.
Duan X B. Hot Deformation and Heat Treatment of 42CrMo Picks for Construction Machinery [D]. Zhenjiang:Jiangsu University, 2022.
[25]Zhen F Q, Sun J L, Li J. Constitutive equation for 3104 alloy at high temperatures in consideration of strain [J]. High Temperature Materials and Processes, 2016, 35(6): 599-605.
[26]周雨童. 42CrMo钢热变形行为及热模拟的研究 [D]. 济南:山东大学, 2022.
Zhou Y T. Study on Thermal Deformation Behavior and Thermal Simulation of 42CrMo Steel [D]. Jinan:Shandong University, 2022.
|