网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
RM80超高强度钢热变形行为及有限元模拟
英文标题:Thermal deformation behavior and finite element simulation on RM80 ultra-high strength steel
作者:苏斌1 孙瑜蔓1 陈刚1 曾斌2 齐江华2 
单位:1.湖南大学   2.涟源钢铁集团有限公司 
关键词:RM80超高强度钢 热变形行为 本构方程 热加工图 流变应力 
分类号:TG142
出版年,卷(期):页码:2023,48(11):212-220
摘要:

利用Gleeble-3180热模拟实验机对RM80超高强度钢在变形温度为900~1100 ℃、应变速率为0.01~10 s-1的条件下进行热压缩实验,根据真应力-真应变曲线,建立了Arrhenius型本构方程,并基于动态材料模型绘制了热加工图;采用有限元软件Deform对RM80钢的热压缩过程进行了模拟,并与实验结果进行了对比。结果表明:RM80钢的流变应力随着应变速率的增大及变形温度的降低显著增大;在变形温度和应变速率分别为1000~1050 ℃和0.01~0.03 s-1以及变形温度和应变速率分别为1050~1100 ℃和0.01~0.10 s-1的条件下,RM80钢具有良好的热加工性能;模拟得到在变形温度为900 ℃、应变速率为0.10 s-1的条件下,试样的真应力-应变曲线与实验结果具有较高的吻合度,证明了所构建的本构方程的准确性。

The thermal compression test of RM80 ultra-high strength steel was carried out at the deformation temperature of 900-1100 ℃ and the strain rate of 0.01-10 s-1 by thermal simulation test machine Gleeble-3180. Then, according to the true stress-true strain curve, Arrhenius type constitutive equation was established, and the thermal processing map was drawn based on the dynamic material model. Furthermore, the thermal compression process of RM80 steel was simulated by finite element software Deform and compared with the test results. The results show that the rheological stress of RM80 steel increases significantly with the increasing of strain rate and the decreasing of deformation temperature. RM80 steel has good thermal working properties under the conditions of the deformation temperature  and the strain rate of 1000-1050 ℃ and 0.01-0.03 s-1, respectively, and the deformation temperature and the strain rate of 1050-1100 ℃ and 0.01-0.10 s-1,respectively. The simulation results show that the true stress-strain curve of sample at the deformation temperature of 900 ℃ and the strain rate of 0.10 s-1 is in high agreement with the test results, which proves the accuracy of the constructed constitutive equation.

基金项目:
校企合作项目(2022-07#(522BA3064A) )
作者简介:
作者简介:苏斌(1974-),男,博士,工程师,E-mail:subindier2008@126.com
参考文献:

[1]应俊龙, 巢昺轩, 蒋克全, 等. 超高强度钢的发展及展望 [J]. 新技术新工艺, 2018, (12): 1-4.


Ying J L, Chao B X, Jiang K Q, et al. Development and prospects of ultra high strength steel [J]. New Technology & New Processes, 2018, (12): 1-4.

[2]赵博, 许广兴, 贺飞, 等. 飞机起落架用超高强度钢应用现状及展望 [J]. 航空材料学报, 2017, 37(6): 1-6.

Zhao B, Xu G X, He F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear [J]. Journal of Aeronautical Materials, 2017, 37 (6): 1-6.

[3]陈刚, 姚远超, 贾寓真, 等. 30Cr4MoNiV 超高强度钢热变形本构方程的构建与优化 [J]. 材料导报, 2022, 36(21): 194-200.

Chen G, Yao Y C, Jia Y Z, et al. Construction and optimization of hot deformation constitutive equation of 30Cr4MoNiV ultra-high-strength steel [J]. Material Repopts, 2022, 36 (21):194-200.

[4]柳木桐, 钟平, 刘大博, 等. 超高强度不锈钢热变形行为及加工图 [J]. 航空材料学报, 2022, 42(4): 49-56.

Liu M T, Zhong P, Liu D B, et al. Hot deformation behavior and processing map of ultra-high strength stainless steel [J]. Journal of Aeronautical Materials, 2022, 42 (4): 49-56.

[5]宁静, 王敖, 苏杰, 等. 新型中合金超高强度钢的热变形行为 [J]. 锻压技术, 2022, 47(12): 234-239.

Ning J, Wang A, Su J, et al. Thermal deformation behavior on new medium alloy ultra-high strength steel [J]. Forging & Stamping Technology, 2022, 47 (12): 234-239.

[6]任书杰, 罗飞, 田野, 等. A100 超高强度钢的流变应力曲线修正与唯象本构关系 [J]. 材料工程, 2019, 47(6): 144-151.

Ren S J, Luo F, Tian Y, et al. Flow stress curve correction and phenomenological constitutive relationship of A100 ultra-high strength steel [J]. Journal of Materials Engineering, 2019, 47 (6): 144-151.

[7]Wang H, Liu D, Wang J G, et al. Characterization of hot deformation behavior of 30Si2MnCrMoVE low-alloying ultra-high-strength steel by constitutive equations and processing maps [J]. Journal of Iron and Steel Research International, 2020, 27(7): 807-819.

[8]Zhong L P, Wang B, Hu C D, et al. Hot deformation behavior and dynamic recrystallization of ultra high strength steel [J]. Metals, 2021, 11(8): 1239.

[9]匡旭光, 杨俊. 热处理工艺对硬质合金带锯条背材 RM80 钢组织和性能的影响 [J]. 特殊钢, 2018, 39(6): 54-57.

Kuang X G, Yang J. Effect of heat treatment process on microstructure and properties of base steel RM80 for cemented carbide bandsaw blade [J]. Special Steel, 2018, 39 (6): 54-57.

[10]卢斌, 易丹青, 刘沙, 等. 深冷处理对双金属带锯条基体用 Rm80 钢的影响 [J]. 热加工工艺, 2000, (1): 25-27.

Lu B, Yi D Q, Liu S, et al. The effect of cryogenic treatment on the properties of Rm80 steels as the base of bimetal saw [J]. Hot Working Technology, 2000, (1): 25-27.

[11]Dong J, Li C, Liu C X, et al. Hot deformation behavior and microstructural evolution of Nb-V-Ti microalloyed ultra-high strength steel [J]. Journal of Materials Research, 2017, 32(19): 3777-3787.

[12]Wang L, Li Y Z, Hu X, et al. Hot deformation behavior and 3D processing map of super austenitic stainless steel containing 7Mo-0.46 N-0.02 Ce: Effect of the solidification direction orientation of columnar crystal to loading direction [J]. Journal of Materials Research and Technology, 2021, 13: 618-634.

[13]Wang K, Wen D X, Li J J, et al. Hot deformation behaviors of low-alloyed ultrahigh strength steel 30CrMnSiNi2A: Microstructure evolution and constitutive modeling [J]. Materials Today Communications, 2021, 26: 102009.

[14]Xu H J, Hu W Q, Kang C, et al. Microstructural evolution and hot deformation behavior of lean duplex stainless steel 2101 [J]. ISIJ International, 2021, 61(3): 967-974.

[15]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metallurgical Transactions A, 1984, 15: 1883-1892.

[16]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22-32.

[17]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control [J]. International Materials Reviews, 1998, 43(6): 243-258.

[18]Quan G Z, Liu Q, Zhao J, et al. Determination of dynamic recrystallization parameter domains of Ni80A superalloy by enhanced processing maps [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(7): 1449-1464.

[19]Murty S V S N, Rao B N. Ziegler′s criterion on the instability regions in processing maps [J]. Journal of Materials Science Letters, 1998, 17(14): 1203-1205.

[20]Ghadar S, Momeni A, Tolaminejad B, et al. A comparative study on the hot deformation behavior of 410 stainless and K100 tool steels [J]. Materials Science and Engineering: A, 2019, 760: 394-406.

[21]李宁. 低合金高强度钢热变形行为及微观组织演变研究 [D]. 哈尔滨:哈尔滨工程大学, 2021.

Li N.  Study on Hot Deformation Behavior and Microstructure Evolution of High Strength Low Alloy Steel [D]. Harbin:Harbin Engineering University, 2021.

[22]Najafi S Z, Momeni A, Jafarian H R, et al. Recrystallization, precipitation and flow behavior of D3 tool steel under hot working condition [J]. Materials Characterization, 2017, 132: 437-447.

[23]周慧敏. 30CrMnSiNi2A 高强钢热变形行为研究 [D]. 重庆:重庆大学, 2019.

Zhou H M. Study on Hot Formability of 30CrMnSiNi2A High Strength Steel [D]. Chongqing:Chongqing University, 2019.

[24]段旭斌. 工程机械用42CrMo截齿的热变形及热处理工艺研究 [D].镇江:江苏大学, 2022.

Duan X B. Hot Deformation and Heat Treatment of 42CrMo Picks for Construction Machinery [D]. Zhenjiang:Jiangsu University, 2022.

[25]Zhen F Q, Sun J L, Li J. Constitutive equation for 3104 alloy at high temperatures in consideration of strain [J]. High Temperature Materials and Processes, 2016, 35(6): 599-605.

[26]周雨童. 42CrMo钢热变形行为及热模拟的研究 [D]. 济南:山东大学, 2022.

Zhou Y T. Study on Thermal Deformation Behavior and Thermal Simulation of 42CrMo Steel [D]. Jinan:Shandong University, 2022.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9