网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铸态300M钢双锥试样热压缩行为
英文标题:Thermal compression behaviors of as-cast 300M steel biconical specimen
作者:许忠智1 韩顺1 韩文2 李波2 厉勇1 王春旭1 袁武华3 
单位:1.钢铁研究总院有限公司 特殊钢研究院 2.航空工业第一飞机设计研究院  3.湖南大学 
关键词:铸态300M钢 热压缩 双锥试样 等效应变 动态再结晶 
分类号:TG142.1
出版年,卷(期):页码:2023,48(11):232-237
摘要:

采用数值模拟和热压缩实验,研究了铸态300M钢双锥试样在加热温度为1000、1100 ℃条件下的动态再结晶行为,通过Deform-3D软件构建了其动态再结晶的微观组织模型,利用EBSD技术对双锥试样等效应变为0.4、0.8、1.8、2.0的位置进行了微观组织分析,探究了其热压缩后的动态再结晶演变规律。模拟结果与实验结果进行对比后发现:热压缩实验的动态再结晶演变结果与数值模拟的结果相吻合,双锥试样等效应变与应变速率的分布规律相同,均沿中心线呈对称分布,最高温度和最大变形量位于中心位置,此处的等效应变峰值为1.78,动态再结晶体积分数随着应变的增大而增大,应变和动态再结晶体积分数之间的关系呈“S”形。

The dynamic recrystallization behavior of as-cast 300M steel biconical specimens at the heating temperature of 1000 and 1100 ℃ was studied by numerical simulation and thermal compression tests, and the microstructural model of dynamic recrystallization was constructed by software Deform-3D. Then, the microstructures of the biconical specimen at the positions with equivalent strains of 0.4, 0.8, 1.8 and 2.0 were analyzed by EBSD technology, and the dynamic recrystallization evolution law after thermal compression was explored. Comparing the simulation results with the test results, it is found that the dynamic recrystallization evolution results of thermal compression test are consistent with the numerical simulation results, and the equivalent strain and strain rates of the biconical specimens have the same distribution law, which are symmetrically distributed along the central line. The maximum temperature and the maximum deformation amount are located in the center, where the peak value of equivalent strain is 1.78. The dynamic recrystallization volume fraction increases with the increasing of strain, and the relationship between strain and dynamic recrystallization volume fraction is “S” shape.

基金项目:
国家重点研发计划(2022YFB3705202)
作者简介:
作者简介:许忠智(1997-),男,硕士研究生,E-mail:xzz_0202@163.com;通信作者:韩顺(1987-),男,博士,高级工程师,E-mail:hanshunfa@126.com
参考文献:

[1]张慧萍, 王崇勋, 杜煦.飞机起落架用300M超高强钢发展及研究现状[J]. 哈尔滨理工大学学报, 2011,16(6): 73-76.


Zhang H P, Wang C X, Du X. Aircraft landing gear with the development of 300M ultra-high strength steel and research[J]. Journal of Harbin University of Science and Technology, 2011,16(6): 73-76.

[2]赵振业, 赵英涛, 何鲁林, 等. 先进飞机结构材料的发展[J]. 材料工程, 1995,(1): 4-8,11.Zhao Z Y, Zhao Y T, He L L, et al. The development of structural materials of advanced aircraft[J]. Journal of Materials Engineering, 1995,(1): 4-8,11.

[3]Medeiros S C, Prasad Y V R K, Frazier W G, et al. Modeling grain size during hot deformation of IN718 [J]. Scripta Arteriola, 2000, 42 (1): 17-23. 

[4]Medeiros S C, Prasad Y V R K, Frazier W G, et al. Microstructural modeling of metadynamic recrystallization in hotworking of IN718 superalloy [J]. Materials Science and Engineering A, 2000, 293(1-2): 198-207.

[5]宁静, 王敖, 苏杰, 等. 新型中合金超高强度钢的热变形行为[J]. 锻压技术, 2022, 47(12): 234-239.

Ning J, Wang A, Su J, et al. Thermal deformation behavior on new medium alloy ultra-high strength steel[J]. Forging & Stamping Technology, 2022, 47(12): 234-239.

[6]Wang J, Dong J X, Zhang M C, et al. Hot working characteristics of nickel-base superalloy 740H during hot compression[J]. Materials Science and Engineering A, 2013, 566: 61-70.

[7]洪橙, 陈荣创, 郑志镇, 等. 300M钢奥氏体晶粒等温长大模型[J]. 塑性工程学报,2018, 25(1): 175-179.

Hong C, Chen R C, Zheng Z Z, et al. Isothermal growth model of austenite grain for 300M steel[J]. Journal of Plasticity Engineering, 2018, 25(1): 175-179.

[8]张旸, 魏明刚, 杨希, 等. AF1410钢动态再结晶行为研究[J]. 大型铸锻件, 2019, 187(1): 23-27.

Zhang Y, Wei M G, Yang X, et al. Behavior research on dynamic recrystallization of AF1410 steel[J]. Heavy Casting and Forging, 2019,187(1): 23-27.

[9]Bi Z N, Zhang M C, Dong J X, et al. A new prediction model of steady state stress based on the influence of the chemical composition for nickel-base superalloys[J]. Materials Science and Engineering A, 2010, 527(16): 4373-4382.

[10]丁小凤, 蒯玉龙, 胡建华, 等. 挤压态镁合金热压缩微观组织预测模型[J]. 锻压技术, 2022, 47(2): 199-206.

Ding X F, Kuai Y L, Hu J H, et al. Prediction model on microstructure for as-extruded magnesium alloy in thermal compression[J]. Forging & Stamping Technology, 2022, 47(2): 199-206.

[11]周琳, 刘运玺, 陈玮, 等. Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图[J]. 稀有金属, 2022, 46(1): 27-35.

Zhou L, Liu Y X, Chen W, et al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy[J]. Chinese Journal of Rare Metals, 2022, 46(1): 27-35.

[12]Wusatowska-Sarnek A M, Miura H, Sakai T. Nucleation and microtexture development under dynamic recrystallization of copper[J]. Materials Science and Engineering A, 2002, 323(1): 177-186.

[13]杨大伟, 李伟, 林莺莺,等. PH13-8Mo钢热变形行为及本构模型[J]. 锻压技术, 2021, 46(5): 234-239, 260.

Yang D W, Li W, Lin Y Y,et al. Hot deformation behavior and constitutive model for PH13-8Mo steel[J]. Forging & Stamping Technology, 2021, 46(5): 234-239,260.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9