[1]Birol Y, Seracettin A. Cooling slope casting to produce EN AW 6082 forging stock for manufacture of suspension components[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(6): 1674-1682.
[2]丁向群, 何国求, 陈成澍, 等. 6000系汽车车用铝合金的研究应用进展[J]. 材料科学与工程学报, 2005, 23(2): 302-305.
Ding X Q, He G Q, Chen C S, et al. Advance in studies of 6000 aluminum alloy for automobile[J]. Journal of Materials Science and Engineering, 2005, 23(2): 302-305.
[3]Li H Y, Zeng C T, Han M S, et al. Time-temperature-property curves for quench sensitivity of 6063 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 38-45.
[4]李俊俊, 邓运来, 郭晓斌. 6082铝合金锻件中晶粒亚结构与析出相的演变及其对性能的影响[J]. 中国有色金属学报, 2022, 32(8): 2209-2221.
Li J J, Deng Y L, Guo X B. Evolution of grain substructure and precipitation in 6082 aluminum alloy forgings and their effects on properties[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(8): 2209-2221.
[5]Wu R H, Liu Y, Geng C, et al. Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map[J]. Journal of Alloys and Compounds, 2017, 713(5): 212-221.
[6]Sun Y, Cao Z H, Wan Z P, et al. 3D processing map and hot deformation behavior of 6A02 aluminum alloy[J]. Journal of Alloys and Compounds, 2018, 742(25): 356-368.
[7]任伟伟. 6082铝合金复杂枝杈类锻件热变形过程内部组织演变及精确成形技术研究[D]. 北京:中国机械科学研究总院集团有限公司, 2018.
Ren W W. Research on Microstructure Evolution and Precise Forming Technology of Complex Branching Forgings of 6082 Aluminum Alloy in Thermal Deformation[D].Beijing:China Academy of Machinery Science and Technology Group, 2018.
[8]刘承禄. 6082铝合金挤压过程模拟与组织性能研究[D]. 重庆:重庆大学, 2011.
Liu C L. Simulation of 6082 Aluminum Alloy Extrusion and Study on Microstructural Properties[D]. Chongqing:Chongqing University, 2011.
[9]韦韡. 6082铝合金筋类锻件热变形行为及组织性能研究[D]. 北京:中国机械科学研究总院集团有限公司, 2009.
Wei W. Research on Hot Deformation Behavior and Microstructure Property of 6082 Aluminum Alloy Forging with Rib[D]. Beijing:China Academy of Machinery Science and Technology Group, 2011.
[10]许周礼. 6082铝合金控制臂锻造变形行为及组织性能演变规律[D]. 武汉:武汉理工大学, 2020.
Xu Z L. Forging Deformation Behavior and Evolution of Microstructure and Properties on 6082 Aluminum Alloy Control Arm[D]. Wuhan:Wuhan University of Technology, 2020.
[11]GB/T 3190—2020,变形铝及铝合金化学成分[S].
GB/T 3190—2020, Chemical composition of wrought aluminium and aluminium alloys[S].
[12]Qin X Y, Huang D W, Yan X J, et al. Hot deformation behaviors and optimization of processing parameters for Alloy 602 CA[J]. Journal of Alloys and Compounds, 2019, 770(5): 507-516.
[13]Moghaddam M, Zarei-Hanzaki A, Farabi E, et al. Approving restoration mechanism in 7075 aluminum alloy through constitutive flow behavior modeling[J]. Advanced Engineering Materials, 2016, 18(6): 989-1000.
[14]Wang S, Luo J R, Hou L G, et al. Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression[J]. Materials & Design, 2016, 107(5): 277-289.
[15]Zheng T T, Li D J, Zeng X Q, et al. Hot compressive deformation behaviors of Mg-10Gd-3Y-0.5 Zr alloy[J]. Progress in Natural Science: Materials International, 2016, 26(1): 78-84.
[16]Cheng W L, Bai Y, Ma S C, et al. Hot deformation behavior and workability characteristic of a fine-grained Mg-8Sn-2Zn-2Al alloy with processing map[J]. Journal of Materials Science & Technology, 2019, 35(6): 1198-1209.
[17]Parvizian F, Güzel A, Jger A, et al. Modeling of dynamic microstructure evolution of EN AW-6082 alloy during hot forward extrusion[J]. Computational Materials Science, 2011, 50(4): 1520-1525.
[18]Guo L G, Yang S, Yang H, et al. Processing map of as-cast 7075 aluminum alloy for hot working[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1774-1783.
[19]Chen G, Lin F Y, Yao S J, et al. Constitutive behavior of aluminum alloy in a wide temperature range from warm to semi-solid regions[J]. Journal of Alloys and Compounds, 2016, 674(25): 26-36.
[20]Dai Q S, Deng Y L, Tang J G, et al. Deformation characteristics and strain-compensated constitutive equation for AA5083 aluminum alloy under hot compression[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2252-2261.
[21]Sellars C M, Mctegart W. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[22]Cai J, Li F G, Liu T Y, et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain[J]. Materials & Design, 2011, 32(3): 1144-1151.
[23]Lin Y, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011, 32(4): 1733-1759.
[24]Farabi E, Zarei-Hanzaki A, Abedi H R. Processing map development through elaborating phenomenological and physical constitutive based models[J]. Advanced Engineering Materials, 2016, 18(4): 572-581.
[25]Rajamuthamilselvan M, Ramanathan S, Karthikeyan R. Processing map for hot working of SiCp/7075 Al composites[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(4): 668-674.
[26]Murty S N, Rao B N. On the development of instability criteria during hotworking with reference to IN 718[J]. Materials Science and Engineering: A, 1998, 254(1-2): 76-82.
[27]Meng G, Li B L, Li H M, et al. Hot deformation and processing maps of an Al-5.7 wt.% Mg alloy with erbium[J]. Materials Science and Engineering: A, 2009, 517(1-2): 132-137.
[28]Prasad Y V R K,Gegel H L, Doraivelu S M,et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.
[29]Seshacharyulu T, Medeiros S, Frazier W, et al. Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: Materials modeling considerations[J]. Materials Science and Engineering: A, 2000, 284(1-2): 184-194.
[30]Tahreen N, Zhang D, Pan F, et al. Hot deformation and processing map of an as-extruded Mg-Zn-Mn-Y alloy containing I and W phases[J]. Materials & Design, 2015, 87(15): 245-255.
|