网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
挤压态6082铝合金热变形行为及组织
英文标题:Thermal deformation behavior and microstructure on extruded 6082 aluminum alloy
作者:杨鑫1 2 曹善鹏1 孙有政1 2 3 庞广鑫1 王莹宁1 王萍3 
单位:1.山东南山铝业有限公司 2. 山东南山科学技术研究院有限公司 3.烟台南山学院 
关键词:6082铝合金 本构模型 热压缩 显微组织 维氏硬度 
分类号:TG146.21
出版年,卷(期):页码:2023,48(11):238-248
摘要:

使用Gleeble-3500热模拟试验机研究了6082铝合金在变形温度为350~500 ℃、应变速率为0.01~10 s-1条件下沿挤压变形方向的热变形行为,得到了真应力-真应变曲线,并建立了本构方程。为了研究挤压态6082铝合金型材的热加工性能,绘制了应变ε=0.3、0.9和峰值应力下的热加工图,并利用光学显微镜(OM)、扫描电子显微镜(SEM)、显微硬度计等设备分析了热压缩后的显微组织、第二相尺寸和材料硬度变化。结果表明:热压缩过程中,挤压态6082铝合金的强度无明显降低,主要软化机制为动态回复;第二相含量随着变形温度的升高逐渐降低,而第二相破碎程度随之升高,且维氏硬度也随之增大。经计算,挤压态6082铝合金的热变形激活能为205.74 kJ·mol-1,该合金较好的热加工工艺范围为465~500 ℃/0.01~0.7 s-1。

The thermal deformation behavior of 6082 aluminum alloy along the extrusion deformation direction under the deformation temperature of 350-500 ℃ and strain rate of 0.01-10 s-1 was studied by using thermal simulation testing machine Gleeble-3500, the true stress-true strain curves were obtained, and the constitutive equation was established. Then, in order to study the thermal processing performance of extruded 6082 aluminum alloy profiles, the thermal processing diagrams under the strains of 0.3 and 0.9 and the peak stress were drawn, and the changes of microstructure, the second phase size and material hardness after thermal compression were analyzed by optical microscope (OM), scanning electron microscope (SEM), microhardness tester and other devices. The results show that the strength of the extruded 6082 aluminum alloy does not decrease significantly during the thermal compression process, and the main softening mechanism is dynamic recovery. The content of the second phase gradually decreases with the increasing of deformation temperature, but the fragmentation degree of the second phase increases, and the Vickers hardness after thermal compression also increases. After calculation, the thermal deformation activation energy of extruded 6082 aluminum alloy is 205.74 kJ·mol-1, and it is recommended that the better thermal processing process range of this alloy is 465-500 ℃/0.01-0.7 s-1.

基金项目:
作者简介:
作者简介:杨鑫(1997-),男,硕士,E-mail:yangxin1@nanshan.com.cn;通信作者:孙有政(1987-),男,博士,高级工程师,E-mail:sunyouzheng@nanshan.com.cn
参考文献:

[1]Birol Y, Seracettin A. Cooling slope casting to produce EN AW 6082 forging stock for manufacture of suspension components[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(6): 1674-1682.


[2]丁向群, 何国求, 陈成澍, 等. 6000系汽车车用铝合金的研究应用进展[J]. 材料科学与工程学报, 2005, 23(2): 302-305.

Ding X Q, He G Q, Chen C S, et al. Advance in studies of 6000 aluminum alloy for automobile[J]. Journal of Materials Science and Engineering, 2005, 23(2): 302-305.

[3]Li H Y, Zeng C T, Han M S, et al. Time-temperature-property curves for quench sensitivity of 6063 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 38-45.

[4]李俊俊, 邓运来, 郭晓斌. 6082铝合金锻件中晶粒亚结构与析出相的演变及其对性能的影响[J]. 中国有色金属学报, 2022, 32(8): 2209-2221.

Li J J, Deng Y L, Guo X B. Evolution of grain substructure and precipitation in 6082 aluminum alloy forgings and their effects on properties[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(8): 2209-2221.

[5]Wu R H, Liu Y, Geng C, et al. Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map[J]. Journal of Alloys and Compounds, 2017, 713(5): 212-221.

[6]Sun Y, Cao Z H, Wan Z P, et al. 3D processing map and hot deformation behavior of 6A02 aluminum alloy[J]. Journal of Alloys and Compounds, 2018, 742(25): 356-368.

[7]任伟伟. 6082铝合金复杂枝杈类锻件热变形过程内部组织演变及精确成形技术研究[D]. 北京:中国机械科学研究总院集团有限公司, 2018.

Ren W W. Research on Microstructure Evolution and Precise Forming Technology of Complex Branching Forgings of 6082 Aluminum Alloy in Thermal Deformation[D].Beijing:China Academy of Machinery Science and Technology Group, 2018.

[8]刘承禄. 6082铝合金挤压过程模拟与组织性能研究[D]. 重庆:重庆大学, 2011.

Liu C L. Simulation of 6082 Aluminum Alloy Extrusion and Study on Microstructural Properties[D]. Chongqing:Chongqing University, 2011.

[9]韦韡. 6082铝合金筋类锻件热变形行为及组织性能研究[D]. 北京:中国机械科学研究总院集团有限公司, 2009.

Wei W. Research on Hot Deformation Behavior and Microstructure Property of 6082 Aluminum Alloy Forging with Rib[D]. Beijing:China Academy of Machinery Science and Technology Group, 2011.

[10]许周礼. 6082铝合金控制臂锻造变形行为及组织性能演变规律[D]. 武汉:武汉理工大学, 2020.

Xu Z L. Forging Deformation Behavior and Evolution of Microstructure and Properties on 6082 Aluminum Alloy Control Arm[D]. Wuhan:Wuhan University of Technology, 2020.

[11]GB/T 3190—2020,变形铝及铝合金化学成分[S].

GB/T 3190—2020, Chemical composition of wrought aluminium and aluminium alloys[S].

[12]Qin X Y, Huang D W, Yan X J, et al. Hot deformation behaviors and optimization of processing parameters for Alloy 602 CA[J]. Journal of Alloys and Compounds, 2019, 770(5): 507-516.

[13]Moghaddam M, Zarei-Hanzaki A, Farabi E, et al. Approving restoration mechanism in 7075 aluminum alloy through constitutive flow behavior modeling[J]. Advanced Engineering Materials, 2016, 18(6): 989-1000.

[14]Wang S, Luo J R, Hou L G, et al. Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression[J]. Materials & Design, 2016, 107(5): 277-289.

[15]Zheng T T, Li D J, Zeng X Q, et al. Hot compressive deformation behaviors of Mg-10Gd-3Y-0.5 Zr alloy[J]. Progress in Natural Science: Materials International, 2016, 26(1): 78-84.

[16]Cheng W L, Bai Y, Ma S C, et al. Hot deformation behavior and workability characteristic of a fine-grained Mg-8Sn-2Zn-2Al alloy with processing map[J]. Journal of Materials Science & Technology, 2019, 35(6): 1198-1209.

[17]Parvizian F, Güzel A, Jger A, et al. Modeling of dynamic microstructure evolution of EN AW-6082 alloy during hot forward extrusion[J]. Computational Materials Science, 2011, 50(4): 1520-1525.

[18]Guo L G, Yang S, Yang H, et al. Processing map of as-cast 7075 aluminum alloy for hot working[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1774-1783.

[19]Chen G, Lin F Y, Yao S J, et al. Constitutive behavior of aluminum alloy in a wide temperature range from warm to semi-solid regions[J]. Journal of Alloys and Compounds, 2016, 674(25): 26-36.

[20]Dai Q S, Deng Y L, Tang J G, et al. Deformation characteristics and strain-compensated constitutive equation for AA5083 aluminum alloy under hot compression[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2252-2261.

[21]Sellars C M, Mctegart W. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.

[22]Cai J, Li F G, Liu T Y, et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain[J]. Materials & Design, 2011, 32(3): 1144-1151.

[23]Lin Y, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011, 32(4): 1733-1759.

[24]Farabi E, Zarei-Hanzaki A, Abedi H R. Processing map development through elaborating phenomenological and physical constitutive based models[J]. Advanced Engineering Materials, 2016, 18(4): 572-581.

[25]Rajamuthamilselvan M, Ramanathan S, Karthikeyan R. Processing map for hot working of SiCp/7075 Al composites[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(4): 668-674.

[26]Murty S N, Rao B N. On the development of instability criteria during hotworking with reference to IN 718[J]. Materials Science and Engineering: A, 1998, 254(1-2): 76-82.

[27]Meng G, Li B L, Li H M, et al. Hot deformation and processing maps of an Al-5.7 wt.% Mg alloy with erbium[J]. Materials Science and Engineering: A, 2009, 517(1-2): 132-137.

[28]Prasad Y V R K,Gegel H L, Doraivelu S M,et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.

[29]Seshacharyulu T, Medeiros S, Frazier W, et al. Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: Materials modeling considerations[J]. Materials Science and Engineering: A, 2000, 284(1-2): 184-194.

[30]Tahreen N, Zhang D, Pan F, et al. Hot deformation and processing map of an as-extruded Mg-Zn-Mn-Y alloy containing I and W phases[J]. Materials & Design, 2015, 87(15): 245-255.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9