网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
脉冲电流对AZ31镁合金板材单向拉伸性能的影响
英文标题:Influence of pulse current on uniaxial tensile properties for AZ31 magnesium alloy plate
作者:宋江豪 杨尚 王刚 杨建雷 
单位:哈尔滨工业大学(威海) 材料科学与工程学院 
关键词:AZ31镁合金 脉冲电流 单向拉伸 电塑性 断裂特征 
分类号:TG146.2;TG115.5
出版年,卷(期):页码:2023,48(12):25-34
摘要:

 为进一步研究和完善脉冲电流对镁合金塑性加工过程中的影响规律,提升镁合金的塑性变形能力,通过对AZ31镁合金板材进行电塑性拉伸实验,研究其在不同电流密度下对板材拉伸力学性能、微观组织演变的影响规律。结果表明:随着电流密度的升高,镁合金板材的伸长率呈现先升高后降低的趋势;引入脉冲电流后,镁合金电塑性拉伸的变形激活能Q=79.447 kJ·mol-1;随着电流密度的升高,AZ31镁合金拉伸断口由脆性断裂转变为韧性断裂,最后由于电流密度升高及缩颈的产生导致熔断。研究发现,电流的加入有降低流动应力的效果,有利于再结晶形核进而进行动态再结晶,从而使镁合金的塑性得到提高。

 In order to further study and improve the influence laws of pulse current on the plastic processing process of magnesium alloy and improve its plastic deformation ability, the electroplastic tensile test of AZ31 magnesium alloy plate was carried out to study its influence laws on mechanical properties and microstructure evolution of plate under different current densities. The results show that with the increasing of current density, the elongation of magnesium alloy plate increases first and then decreases. After the introduction of pulse current,the deformation activation energy Q of magnesium alloy electroplastic tensile is 79.447 kJ·mol-1. With the increasing of current density, the tensile fracture of AZ31 magnesium alloy plate changes from brittle fracture to ductile fracture, and finally melts due to the increasing of current density and the occurrence of necking. It is found that the addition of current has the effect of reducing the flow stress, which is conducive to recrystallization nucleation and dynamic recrystallization, so as to improve the plasticity of magnesium alloy.

基金项目:
国家自然科学基金资助项目(51905123)
作者简介:
作者简介:宋江豪(2002-),男,本科生 E-mail:sjh15516774695@163.com 通信作者:杨建雷(1986-),男,博士,副教授 E-mail:jlyang@hit.edu.cn
参考文献:

 [1]Gupta M K, Singhal V. Review on materials for making lightweight vehicles[J]. Materials Today: Proceedings, 2022, 56: 868-872.


[2]钱余海,吴庆芳,雷浩.汽车轻量化材料及工艺的研究进展[J].大众科技,2022, 24(2): 49-52.


Qian Y H, Wu Q F, Lei H, et al. Research progress of automobile lightweight materials and technology[J].Popular Science & Technology,2022,24(2):49-52.


[3]夏琴香,陈灿,肖刚锋,等.难变形金属电--力耦合作用下的电致塑性效应研究现状[J].锻压技术,202146(9)124-131.


Xia Q X, Chen C, Xiao G F, et al. Current status of research on electroplasticity effect for difficult-to-deform metals under electro-thermo-mechanical coupling [J]. Forging & Stamping Technology,2021,46(9):124-131.


[4]黄钰. Mg-3Al-1Sn-1Zn镁合金在脉冲电流作用下的力学性能及微观组织研究[D]. 长春:吉林大学, 2021.


Huang Y. Study on Mechanical Properties and Microstructure of Mg-3Al-1Sn-1Zn Magnesium Alloy under Pulse Current[D]. Changchun: Jilin University, 2021.


[5]Bao W K, Chu X R, Lin S X, et al. Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming[J]. Materials & Design, 2015, 87: 632-639.


[6]Wang R J, Xu Z H, Jiang Y B, et al. The coupling of thermal and athermal effect in high-density multiple pulse continuous treatment of AZ31[J]. Materials & Design, 2022, 215: 110495.


[7]Wang X Y, Xu C, Li Y, et al. Respective roles of the thermal and electromigration effect in AZ31 Mg alloy during low-frequency electropulsing tension[J]. Journal of Alloys and Compounds, 2020, 846: 156074.


[8]Xu Q, Tang G, Jiang Y, et al. Accumulation and annihilation effects of electropulsing on dynamic recrystallization in magnesium alloy[J]. Materials Science and Engineering: A, 2011, 528(7): 3249-3252.


[9]Liu Y Z, Meng B, Du M, et al. Electroplastic effect and micro-structural mechanism in electrically assisted deformation of nickel-based superalloys[J]. Materials Science and Engineering: A, 2022, 840: 142975.


[10]Wang S P, Xiao A, Lin Y H, et al. Effect of induced pulse current on mechanical properties and microstructure of rolled 5052 aluminum alloy[J]. Materials Characterization, 2022, 185: 111757.


[11]Xiao A, Huang C Q, Cui X H, et al. Impact of the pulse induced current on the microstructure and mechanical properties of the 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds, 2022, 911: 165021.


[12]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].


[13]李泽宇,徐晓,王磊,.脉冲电流对30CrMnSiA合金钢流动应力的影响[J].锻压技术,2019,44(2):74-80.


Li Z Y, Xu X, Wang L, et al. Influence of pulse current on flow stress of 30CrMnSiA alloy steel[J]. Forging & Stamping Technology, 2019, 44(2): 74-80.


[14]魏海莲,周红伟,潘红波.微合金化高强钢的热变形行为及物理本构方程[J].锻压技术,2022,47(5):217-225.


Wei H L, Zhou H W, Pan H B. Hot deformation behaviors and physical constitutive equation of microalloyed high-strength steel[J]. Forging & Stamping Technology, 2022, 47(5): 217-225.


[15]潘金启.等轴状钛基复合材料热压剪切变形行为及组织演变[D]. 哈尔滨:哈尔滨工业大学,2020.


Pan J Q. Hot Compression Shear Deformation Behavior and Microstructure Evolution of Equiaxed Titanium Matrix Composites[D]. Harbin: Harbin Institute of Technology, 2020.


[16]刘纯. AZ31镁合金热变形激活能及变形机理的研究[D].武汉:武汉科技大学,2016.


Liu C. A Study on Thermal Deformation Activation Energy and Deformation Mechanism of AZ31 Magnesium Alloy [D]. Wuhan:Wuhan University of Science and Technology,2016.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9