[1]Gupta M K, Singhal V. Review on materials for making lightweight vehicles[J]. Materials Today: Proceedings, 2022, 56: 868-872.
[2]钱余海,吴庆芳,雷浩.汽车轻量化材料及工艺的研究进展[J].大众科技,2022, 24(2): 49-52.
Qian Y H, Wu Q F, Lei H, et al. Research progress of automobile lightweight materials and technology[J].Popular Science & Technology,2022,24(2):49-52.
[3]夏琴香,陈灿,肖刚锋,等.难变形金属电-热-力耦合作用下的电致塑性效应研究现状[J].锻压技术,2021,46(9):124-131.
Xia Q X, Chen C, Xiao G F, et al. Current status of research on electroplasticity effect for difficult-to-deform metals under electro-thermo-mechanical coupling [J]. Forging & Stamping Technology,2021,46(9):124-131.
[4]黄钰. Mg-3Al-1Sn-1Zn镁合金在脉冲电流作用下的力学性能及微观组织研究[D]. 长春:吉林大学, 2021.
Huang Y. Study on Mechanical Properties and Microstructure of Mg-3Al-1Sn-1Zn Magnesium Alloy under Pulse Current[D]. Changchun: Jilin University, 2021.
[5]Bao W K, Chu X R, Lin S X, et al. Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming[J]. Materials & Design, 2015, 87: 632-639.
[6]Wang R J, Xu Z H, Jiang Y B, et al. The coupling of thermal and athermal effect in high-density multiple pulse continuous treatment of AZ31[J]. Materials & Design, 2022, 215: 110495.
[7]Wang X Y, Xu C, Li Y, et al. Respective roles of the thermal and electromigration effect in AZ31 Mg alloy during low-frequency electropulsing tension[J]. Journal of Alloys and Compounds, 2020, 846: 156074.
[8]Xu Q, Tang G, Jiang Y, et al. Accumulation and annihilation effects of electropulsing on dynamic recrystallization in magnesium alloy[J]. Materials Science and Engineering: A, 2011, 528(7): 3249-3252.
[9]Liu Y Z, Meng B, Du M, et al. Electroplastic effect and micro-structural mechanism in electrically assisted deformation of nickel-based superalloys[J]. Materials Science and Engineering: A, 2022, 840: 142975.
[10]Wang S P, Xiao A, Lin Y H, et al. Effect of induced pulse current on mechanical properties and microstructure of rolled 5052 aluminum alloy[J]. Materials Characterization, 2022, 185: 111757.
[11]Xiao A, Huang C Q, Cui X H, et al. Impact of the pulse induced current on the microstructure and mechanical properties of the 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds, 2022, 911: 165021.
[12]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[13]李泽宇,徐晓,王磊,等.脉冲电流对30CrMnSiA合金钢流动应力的影响[J].锻压技术,2019,44(2):74-80.
Li Z Y, Xu X, Wang L, et al. Influence of pulse current on flow stress of 30CrMnSiA alloy steel[J]. Forging & Stamping Technology, 2019, 44(2): 74-80.
[14]魏海莲,周红伟,潘红波.微合金化高强钢的热变形行为及物理本构方程[J].锻压技术,2022,47(5):217-225.
Wei H L, Zhou H W, Pan H B. Hot deformation behaviors and physical constitutive equation of microalloyed high-strength steel[J]. Forging & Stamping Technology, 2022, 47(5): 217-225.
[15]潘金启.等轴状钛基复合材料热压剪切变形行为及组织演变[D]. 哈尔滨:哈尔滨工业大学,2020.
Pan J Q. Hot Compression Shear Deformation Behavior and Microstructure Evolution of Equiaxed Titanium Matrix Composites[D]. Harbin: Harbin Institute of Technology, 2020.
[16]刘纯. AZ31镁合金热变形激活能及变形机理的研究[D].武汉:武汉科技大学,2016.
Liu C. A Study on Thermal Deformation Activation Energy and Deformation Mechanism of AZ31 Magnesium Alloy [D]. Wuhan:Wuhan University of Science and Technology,2016.
|