网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于响应面法的摩擦旋压温升研究
英文标题:Study on temperature rise for friction spinning based on response surface method
作者:孙守義 王进 李宝阁 曹高威 张新月 
单位:青岛理工大学 机械与汽车工程学院 
关键词:摩擦旋压 温升变化 响应面法 进给速度 主轴转速 锥形件成形角度 
分类号:TG386
出版年,卷(期):页码:2023,48(12):35-40
摘要:

 为了探究摩擦旋压过程中进给速度、主轴转速及锥形件的成形角度等工艺参数对温升的影响规律以及各因素间的交互作用,进行了Box-Behnken实验设计。基于实验设计和测温实验,建立了铝合金摩擦旋压过程中温升相对进给速度、主轴转速、锥形件的成形角度等工艺参数的响应面模型并分析了不同因素对摩擦旋压中温升影响的原因。结果表明:成形角度对温升的影响最大,其次是主轴转速及进给速度;工艺参数的不同会影响旋压力的大小和刀具在工件上走过的路程,从而产生不同的加工温度。改变旋压加工中的刀具形式,可显著提升板料温度,提高工件的成形性。当进给比较小时,不仅加工过程中温升提高,工件的表面质量也得到改善。

 A Box-Behnken experimental design was conducted to investigate the influence laws of process parameters such as feeding rate, spindle speed and forming angle of tapered part on the temperature rise in friction spinning process and the interaction between these factors. Based on the experimental design and temperature measurement experiments, the response surface model of the temperature rise relative to the process parameters such as feeding rate, spindle speed and forming angle of tapered part during the aluminum alloy friction spinning process was established, and the causes of different factors affecting the temperature rise in friction spinning were analyzed. The results show that the forming angle has the biggest influence on the temperature rise, followed by the spindle speed and the feeding rate, and the difference of process parameters could affect the value of spinning force and the distance that the tool travels on the workpiece, resulting in different processing temperatures. Changing the tool form in the spinning process can significantly increase the temperature of sheet and improve the formability of workpiece. When the feeding ratio is relatively small, not only the temperature rise in the processing process is increased, but the surface quality of the workpiece is also improved.

基金项目:
山东省重点研发计划项目(2019GGX102023)
作者简介:
作者简介:孙守義(1998-),男,硕士研究生 E-mail:1769420635@qq.com 通信作者:王进(1978-),男,博士,教授 E-mail:wangjin@qut.edu.cn
参考文献:

 [1]Benjamin L,Anatolii A,Werner H,et al. Friction-spinning-Possibility of grain structure adjustment[J]. Procedia Engineering,2017,207: 1749-1754.


[2]Hess S,Lossen B, Biermann D, et al.Analysis of the surface roughness obtained in a friction spinning process based on empirical models [J]. The International Journal of Advanced Manufacturing Technology, 2014,74(9-12): 1655-1665.


[3]Homberg W, Hornjak D, Beerwald C.Manufacturing of complex functional craded workpieces with the friction-spinning process[J]. International Journal of Material Forming,2010, 3:943-946.


[4]Gao P F, Yan X G, Li F G, et al. Deformation mode and wall thickness variation in conventional spinning of metal sheets[J]. International Journal of Machine Tools and Manufacture,2021(prepublish).DOI:10.1016/J.IJMACHTOOLS.2021.103846.


[5]Werner H, Benjamin L, Struwe A. Friction-spinning-An innovative incremental forming process for the manufacturing of functional graded parts[J]. Key Engineering Materials,2013,2443: 554-557.


[6]Benjamin L, Werner H. Friction-spinning-Influence of tool and machine parameters on the surface texture[J]. Key Engineering Materials,2015,3974: 651-653.


[7]Hess S, Lossen B, Biermann D, et al. Analysis of the surface roughness obtained in a friction spinning process based on empirical models[J]. The International Journal of Advanced Manufacturing Technology,2014,74: 9-12.


[8]温涛,陈永来,杜玥,.旋压变形对2195铝锂合金组织和性能的影响[J].载人航天,2020,26(6):717-722.


Wen T, Chen Y L, Du Y, et al. Spinning deformation on the microstructure and mechanical properties of 2195 Al-Li alloy[J]. Manned Spaceflight, 2020, 26 (6): 717-722.


[9]陈永来,温涛,朱宏伟,.2195铝锂合金半球壳体旋压件制备与其组织性能研究[J].航天制造技术,2019(1):17-21.


Chen Y L, Wen T, Zhu H W, et al. Preparation of 2195 hemispherical shell spinning parts and their microstructure properties [J]. Aerospace Manufacturing Technology,2019(1):17-21.


[10]汪发春,聂兰启,陈永清,等.5A06铝合金壳体热旋成形工艺研究[J].模具制造,201919(8)29-32.


Wang F C, Nie L Q, Chen Y Q, et al. Study on hot spin forming process of 5A06 aluminum alloy shell [J]. Die & Mould Manufacture,2019,19(8):29-32.


[11]刘光军,丁桦,姜壹夫,等.6061铝合金热旋压变形不均匀性的数值模拟和实验研究[J].热加工工艺,2023,52(5):96-101.


Liu G J, Ding H, Jiang Y F, et al. Numerical simulation and experimental study on deformation inhomogeneity of 6061 aluminum alloy under hot spinning [J]. Hot Working Technology,2023,52(5):96-101.


[12]张晋辉,牛婷,温凯,等.铝合金锥形件强旋壁厚与旋压力分布研究[J].兵器装备工程学报,202041(8)239-243.


Zhang J H, Niu T, Wen K, et al. Study on strong wall thickness and rotation pressure distribution of aluminum alloy conical parts [J]. Journal of Ordnance Equipment Engineering,2020,41(8):239-243.


[13]潘和勇,樊文欣,李涵,等.基于响应曲面法的强力旋压锡青铜筒形件硬度研究[J].塑性工程学报,2019,26(1)240-244.


Pan H Y, Fan W X, Li H, et al. Research on hardness of strong spinning tin bronze cylinder parts based on response surface method [J]. Journal of Plasticity Engineering,2019,26(1):240-244.


[14]李宝阁,王进,张会,等.基于响应面法的无芯模成形精度研究[J].精密成形工程,202214(3)34-39.


Li B G, Wang J, Zhang H, et al. Research on forming precision of coreless die based on response surface method[J]. Journal of Netshape Forming Engineering,2022,14(3):34-39.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9