[1]肖刚锋,张义龙,夏琴香,等. 镍基高温合金锥筒形件拉深旋压时成形质量及组织性能研究[J]. 锻压技术,2021,46(9):190-196.
Xiao G F,Zhang Y L,Xia Q X,et al. Research on forming quality,microstructure and properties for Ni-based superalloy conical-cylindrical parts during deep-drawing spinning [J]. Forging & Stamping Technology,2021,46(9):190-196.
[2]王岩,谷宇,王珏,等. 铸态镍基高温合金GH4698热变形行为[J]. 锻压技术,2021,46(11):250-254.
Wang Y,Gu Y,Wang J,et al. Hot deformation behavior of as-cast Ni-based superalloy GH4698[J]. Forging & Stamping Technology,2021,46(11):250-254.
[3]方军,吴敏,张涛,等. GH4169高温合金螺栓热锻成形工艺[J]. 锻压技术,2022,47(3):8-22.
Fang J,Wu M,Zhang T,et al. Hot forging process on superalloy GH4169 bolt[J]. Forging & Stamping Technology,2022,47(3):8-22.
[4]Gui Y, Liang Z, Shao H, et al. Corrosion behavior and lifetime prediction of VM12, Sanicro 25 and Inconel 617 in supercritical carbon dioxide at 600 ℃ [J]. Corrosion Science, 2020, 175: 108870.
[5]Athreya C N, Deepak K, Kim D, et al. Role of grain boundary engineered microstructure on high temperature steam oxidation behaviour of Ni based superalloy alloy 617 [J]. Journal of Alloys and Compounds, 2019, 778: 224-233.
[6]Patel B, Patle B K, Paturi U M R. Experimental investigation of fatigue life of Inconel 617 at elevated temperature [J]. Materials Today: Proceedings, 2021, 38: 3125-3130.
[7]Zhong Y, Liu X, Lan K C, et al. On the biaxial thermal creep-fatigue behavior of Ni-base alloy 617 at 950 ℃ [J]. International Journal of Fatigue, 2020, 139: 105787.
[8]Mo K, Lyu W, Tung H M, et al. Biaxial thermal creep of alloy 617 and alloy 230 for VHTR applications [J]. Journal of Engineering Materials & Technology, 2016, 138: 021502.
[9]Bhuyan P, Paliwal M, Sarma V S, et al. Precipitate evolution during aging and its individual role on high-temperature hot corrosion response in alloy 617 [J]. Journal of Alloys and Compounds, 2021, 871: 159499.
[10]Watanabe T. An approach to grain boundary design of strong and ductile polycrystals [J]. Res Mechanica, 1984, 11(1): 47-84.
[11]Gao J, Tan J B, Wu X Q, et al. Effect of grain boundary engineering on corrosion fatigue behavior of 316LN stainless steel in borated and lithiated high-temperature water [J]. Corrosion Science, 2019, 152: 190-201.
[12]Hu H, Zhao M, Chen S, et al. Effect of grain boundary character distribution on hydrogen embrittlement in Fe-Ni based alloy [J]. Materials Science and Engineering: A, 2020, 780: 139201.
[13]Zhu H H, Pan Q L, Zhang K Y, et al. The difference in fatigue crack growth induced by internal and external hydrogen in selective laser melted 304L stainless steel [J]. International Journal of Fatigue, 2022, 163: 107052.
[14]Deepak K, Mandal S, Athreya C N, et al. Implication of grain boundary engineering on high temperature hot corrosion of alloy 617 [J]. Corrosion Science, 2016, 106: 293-297.
[15]Telang A, Gill A S, Kumar M, et al. Iterative thermomechanical processing of alloy 600 for improved resistance to corrosion and stress corrosion cracking [J]. Acta Materialia, 2016, 113: 180-193.
[16]Randle V. Twinning-related grain boundary engineering [J]. Acta Materialia, 2004, 52(14): 4067-4081.
[17]Bhuyan P, Reddy K V, Pradhan S K, et al. A potential insight into the serration behaviour of Sigma 3(n)(n ≤3) boundaries in alloy 617 [J]. Materials Chemistry and Physics, 2020, 248: 122919.
[18]Jeong C Y, Kim K J, Hong H U, et al. Effects of aging temperature and grain size on the formation of serrated grain boundaries in an AISI 316 stainless steel [J]. Materials Chemistry and Physics, 2013, 139(1): 27-33.
[19]Hong H U, Kim I S, Choi B G, et al. The effect of grain boundary serration on creep resistance in a wrought nickel-based superalloy [J]. Materials Science and Engineering: A, 2009, 517(1-2): 125-131.
[20]Hong H U, Jeong H W, Kim I S, et al. A study on the formation of serrated grain boundaries and its applications in nimonic 263 [J]. Materials Science Forum, 2010, 638: 2245-2250.
[21]Tang Y T, Wilkinson A J, Reed R C. Grain boundary serration in nickel-based superalloy Inconel 600: Generation and effects on mechanical behavior [J]. Metallurgical and Materials Transactions: A, 2018, 49(9): 4324-4342.
[22]Lim Y S, Kim D J, Hwang S S, et al. M23C6 precipitation behavior and grain boundary serration in Ni-based alloy 690 [J]. Materials Characterization, 2014, 96: 28-39.
[23]杨万鹏, 胡本芙, 刘国权, 等. 高性能镍基粉末高温合金中γ′相形态致锯齿晶界形成机理研究[J]. 材料工程, 2015, 43(6): 7-13.
Yang W P, Hu B F, Liu G Q, et al. Formation mechanism of serrated grain boundary caused by different morphologies of γ′ phases in a high-performance nickel-based powder metallurgy superalloy [J]. Journal of Materials Engineering, 2015, 43(6): 7-13.
[24]Lee J W, Terner M, Hong H U, et al. A new observation of strain-induced grain boundary serration and its underlying mechanism in a Ni-20Cr binary model alloy [J]. Materials Characterization, 2018, 135: 146-153.
[25]Brandon D G. The structure of high-angle grain boundaries [J]. Acta Metallurgica, 1966, 14(11): 1479-1484.
[26]Kumar R, Arora A, Mahajan D K. Hydrogen-assisted intergranular fatigue crack initiation in metals: Role of grain boundaries and triple junctions [J]. International Journal of Hydrogen Energy, 2023, 48(43): 16481-16500.
[27]Ogawa Y, Okazaki S, Takakuwa O, et al. The roles of internal and external hydrogen in the deformation and fracture processes at the fatigue crack tip zone of metastable austenitic stainless steels [J]. Scripta Materialia, 2018, 157: 95-99.
[28]Mclean D. Grain Boundaries in Metals [M]. Oxford UK: Clarendon Press, 1957.
[29]Minkwitz C, Herzig C, Rabkin E, et al. The inclination dependence of gold tracer diffusion along a Σ3 twin grain boundary in copper [J]. Acta Materialia, 1999, 47(4): 1231-1239.
|