网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻压机液压增压系统的设计
英文标题:Design on hydraulic pressure boosting system for forging press
作者:  鹏1 2 
单位:1. 汉江师范学院 新型功能材料制备与物性研究中心 2. 汉江师范学院 物理与电子工程学院 
关键词:锻压机 液压系统 增压回路 输出压力 增压比 
分类号:TG315
出版年,卷(期):页码:2024,49(1):189-195
摘要:

 为降低锻压过程中的能量损耗,设计了最大输出压力为25 MN的锻压机液压系统,介绍了单电机驱动的并联双泵液压站,设计了基于双向液压缸的连续增压回路,并进行了设计计算和仿真,完成了基于S7-200smart系列PLC及模拟量扩展模块的控制系统设计。利用AMESim软件建立了并联双泵液压站、连续增压回路和锻压机液压系统模型,并分别对其进行了仿真分析。结果表明:当液压站输出压力升高至4.9 MPa时,通过低压大流量泵卸荷来减小液压站的输出流量,避免了电机过载和溢流损耗;分别设定液压站的不同输出压力值,得到液压站和液压缸上腔的压力值,增压比的计算值均在4左右,与设计增压比k=4基本吻合,增压效果明显,并且在加压增压过程中最大限度地减小了溢流损耗,提高了能源的利用率,为高压液压系统的节能设计提供了参考。

 In order to reduce the energy loss during the forging process, a hydraulic system of forging press with a maximum output pressure of 25 MN was designed, and a parallel dual-pump hydraulic station driven by a single motor was introduced. Then, a continuous boosting circuit based on a two-way hydraulic cylinder was designed, the calculation and simulation were conducted, and the control system based on S7-200smart series PLC and analog expansion module was designed. Furthermore, the models of parallel dual-pump hydraulic station, continuous boosting circuit and hydraulic system of forging press were established by software AMESim, and the simulation analysis were conducted on them respectively. The results show that when the output pressure of hydraulic station increases to 4.9 MPa, the output flow of hydraulic station is reduced by unloading of the low-pressure and large-flow pump to avoid motor overload and overflow loss. Different output pressure values of hydraulic station are set respectively to obtain the pressure values of hydraulic station and the upper chamber of hydraulic cylinder. The calculated value of boost ratio is around four, which is basically consistent with the design boost ratio k=4, and the boost effect is obvious. The overflow loss is minimized during the pressurization and boosting process, and the energy utilization rate is improved, which provides a reference for energy-saving design of high-pressure hydraulic system.

基金项目:
湖北省教育厅科学技术研究项目(B2022222);湖北省高等学校优秀中青年科技创新团队计划项目(T2020024);汉江师范学院教学改革研究项目(2022B17)
作者简介:
作者简介:周 鹏(1981-),男,硕士,副教授 E-mail:407754951@qq.com
参考文献:

 [1]  刘艳雄,张怡俊,纪开盛,等.锻压能耗分析及节能技术研究进展[J].塑性工程学报,2022,29(1):1-10.


Liu Y X,Zhang Y J,Ji K S,et al. Research progress of energy consumption analysis and energy saving technology in forging and pressing[J].Journal of Plasticity Engineering,2022,29(1):1-10.

[2]  胡美些,狄石磊.坯料预热方式对AZ80镁合金轮毂组织和性能的影响[J].锻压技术,2022,47(9):39-44.

Hu M X,Di S L.Influence of billet preheating method on microstructure and properties for AZ80 magnesium alloy wheel hub[J].Forging & Stamping Technology,2022,47(9):39-44.

[3]  陈清,陈立辉.挤锻复合成形Mg-4Al-2Sn镁合金的组织及性能研究[J].热加工工艺,2021,50(11):97-99,103.

Chen Q,Chen L H.Study on microstructure and properties of Mg-4Al-2Sn magnesium alloy formed by extrusion-forging composite forming[J].Hot Working Technology,2021,50(11):97-99,103.

[4]  张文玉,刘先兰,邓彬,等.轧制温度对AZ31镁合金板材组织和性能的影响[J].锻压技术,2023,48(1):158-164.

Zhang W Y,Liu X L,Deng B,et al.Influence of rolling temperature on microstructure and properties of AZ31 magnesium alloy sheet[J].Forging & Stamping Technology,2023,48(1):158-164.

[5]  刘培基,刘飞,王旭,等.绿色制造的理论与技术体系及其新框架[J].机械工程学报,2021,57(19):165-179.

Liu P J,Liu F,Wang X,et al.The theory and technology system of green manufacturing and their new frameworks[J].Journal of Mechanical Engineering,2021,57(19):165-179.

[6]  黄周轩,刘赟清,张晓丽,等.用于比例变量泵供液系统的预压阀组设计与仿真分析[J].锻压技术,2023,48(7):162-169.

Huang Z X,Liu Y Q,Zhang X L,et al.Design and simulation analysis on pre-charge valve group for hydraulic supply system of proportional variable pump[J].Forging & Stamping Technology,2023,48(7):162-169.

[7]  曾永龙,赵晓斌,邓攀,等.超高压柱塞液压缸自适应变间隙密封技术研究[J].机床与液压,2022,50(2):122-126.

Zeng Y L,Zhao X B,Deng P,et al.Research on adaptive variable clearance sealing technology of ultrahigh pressure plunger hydraulic cylinder[J].Machine Tool & Hydraulics,2022,50(2):122-126.

[8]  石勇,潘炜,张跃军.溢流阀溢流损耗能量回收系统研究[J].液压与气动,2019,(12):132-136.

Shi Y,Pan W,Zhang Y J. Energy regeneration system for pressure differential loss energy in hydraulic relief valve [J]. Chinese Hydraulics & Pneumatics,2019,(12):132-136.

[9]  武艳慧,张海军,郭俊.基于AMESim的粉末压机液压系统节能控制[J].机床与液压,2022,50(5):161-165.

Wu Y H,Zhang H J,Guo J.Energy saving control of metal powder press hydraulic system based on AMESim[J].Machine Tool & Hydraulics,2022,50(5):161-165.

[10]刘启航,万丽荣.基于AMESim液压仿真平台的双联轴向柱塞泵液压系统分析及试验研究[J].机床与液压,2022,50(4):24-28.

Liu Q H,Wan L R.Hydraulic system analysis and experimental research based on AMESim hydraulic simulation platform for dual axial piston pump[J].Machine Tool & Hydraulics,2022,50(4):24-28.

[11]颜笑鹏,陈柏金,张连华,等.双向增压系统应用特性研究[J].锻压技术,2022,47(3):191-197.

Yan X P,Chen B J,Zhang L H,et al. Research on application characteristics for bidirectional supercharging system[J].Forging & Stamping Technology,2022,47(3):191-197.

[12]申心雨,寇子明,杨俊,等.基于AMESim的首绳更换装置液压系统设计与研究[J].机床与液压,2023,51(1):88-94.

Shen X Y,Kou Z M,Yang J,et al.Design and research on hydraulic system of head rope replacement device based on AMESim[J].Machine Tool & Hydraulics,2023,51(1):88-94.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9