网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不同热轧工艺对ZK61镁合金板材塑性变形的影响
英文标题:
作者:王硕华 卫宏喆 陈明 刘庆杰 张昊 
单位:(辽宁科技大学 机械工程与自动化学院 辽宁 鞍山 114051) 
关键词:ZK61镁合金 同步轧制 异步温轧 力学性能 塑性变形机制 
分类号:TG146
出版年,卷(期):页码:2024,49(2):146-151
摘要:

 针对镁合金因其典型的密排六方结构在室温条件下难以成形的问题,采用多道次同步热轧结合异步温轧的加工工艺,制备了具有高抗拉强度和伸长率的ZK61镁合金薄板,并结合宏观轧制有限元模拟方法详细分析了轧制过程中板材的塑性变形机制。拉伸实验结果表明:随着轧制的进行,板材的各向异性变弱,力学性能不断提升,抗拉强度达到398.9 MPa,伸长率达到30.4%。模拟结果显示:在同步轧制时,最大等效应力值随轧制的进行略微增加,而异步轧制时的最大等效应力值随轧制的进行逐渐降低;同步轧制前几道次的轧件的等效塑性应变并不均匀,但随着轧制的进行和后续的异步轧制,板材的塑性应变逐渐均匀。

 

 For the problem that magnesium alloy was difficult to form at room temperature due to its typical close-packed hexagonal structure, ZK61 magnesium alloy sheet with high tensile strength and elongation was obtained through a combination process of multi-pass synchronous hot rolling and asynchronous warm rolling, and combined with the finite element simulation method of macroscopic rolling, the plastic deformation mechanism during the rolling process was analyzed in detail. The results of the tensile test show that as the rolling progresses, the anisotropy of sheet becomes weaker and the mechanical properties continue to be improved, and the tensile strength reaches 398.9 MPa and the elongation reaches 30.4%. The simulation results show that during the synchronous rolling, the maximum equivalent stress value increases slightly as the rolling progresses, while the maximum equivalent stress value during the asynchronous rolling gradually decreases as the rolling progresses. The equivalent plastic strain of rolled piece in the first few passes of synchronous rolling is not uniform, but as the rolling progresses and the subsequent asynchronous rolling, the plastic strain of sheet gradually becomes uniform.

 
基金项目:
基金项目:辽宁省教育厅重点基金资助项目(LJKZ0281);辽宁科技大学大学生创新创业项目(S202310146023)
作者简介:
作者简介:王硕华(2002-),男,本科生
参考文献:

 


 


[1]张志华, 潘复生, 陈先华, 等. 镁及其合金的电磁屏蔽性能研究
[J]. 材料工程, 2013,(1): 52-57.

 

Zhang Z H, Pan F S, Chen X H, et al. Electromagnetic shielding properties of magnesium and magnesium alloys
[J]. Materials Engineering, 2013,(1): 52-57.

 


[2]周国伟. AZ31B镁合金板材温热塑性变形机制与成形极限的实验与理论研究
[D].上海:上海交通大学, 2016.

 

Zhou G W. Experimental and Crystal Plasticity Analysis on the Deformation Mechanisms and Forming Limit of AZ31B Mg Alloy Sheet at Warm Conditions
[D].Shanghai:Shanghai Jiao Tong University, 2016.

 


[3]玲犀. 加强创新,促进镁合金的发展和应用——访中国工程院院士,上海交通大学丁文江教授
[J]. 航空制造技术, 2017, 531(12): 24-26.

 

Ling X.Innovation promoting the development and application of magnesium alloy—Visiting academician of chinese academy of engineering, professor Ding Wenjiang,Shanghai Jiao Tong University
[J]. Aeronautical Manufacturing Technology, 2017, 531(12): 24-26.

 


[4]Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment
[J]. Journal of Materials Processing Technology, 2001, 117(3): 381-385.

 


[5]丁云鹏,崔建忠,乐启炽,等. 镁合金板材的生产历史与研究现状
[J]. 精密成形工程, 2014, 6(6): 7-21.

 

Ding Y P, Cui J Z, Le Q Z, et al. Production history and present study status of magnesium alloy sheet
[J]. Precision Forming Engineering, 2014, 6(6): 7-21.

 


[6]Kulekci M K. Magnesium and its alloys applications in automotive industry
[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(9): 851-865.

 


[7]范子杰, 桂良进, 苏瑞意. 汽车轻量化技术的研究与进展
[J]. 汽车安全与节能学报, 2014,(1): 1-16.

 

Fan Z J, Gui L J, Su R Y. Research and development of automotive lightweight technology
[J]. Journal of Automotive Safety and Energy, 2014,(1): 1-16.

 


[8]吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望
[J]. 载人航天, 2016, 22(3): 281-292.

 

Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry
[J]. Manned Spaceflight, 2016, 22(3): 281-292.

 


[9]陈文振. ZK61镁合金薄板轧制与组织、织构及性能研究
[D]. 哈尔滨: 哈尔滨工业大学, 2013.

 

Chen W Z. Research on Microstructure, Texture and Mechanical Properties of ZK61 Mgthin Sheets Produced by Rolling
[D].Harbin: Harbin Institute of Technology, 2013.

 


[10]Qi Y S, Wang H, Chen L L, et al. Preparation and mechanical properties of ZK61Y magnesium alloy wheel hub via liquid forgingisothermal forging process
[J]. MetalsOpen Access Metallurgy Journal, 2020, 10(3): 385.

 


[11]Malik A,Wang Y W,Nazeer F,et al. Effect of precompression on changes in texture and yielding behavior of ZK61 Mg alloy
[J].Vacuum, 2020, 172, 109039.

 


[12]Zhang L X, Zhang W C, Chen W Z, et al. The effect of grain size on the strain hardening behavior for extruded ZK61 magnesium alloy
[J]. Journal of Materials Engineering & Performance, 2017, 26(12): 6013-6021.

 


[13]Li Z G, Yang H F, Liu J G. Comparative study on yield behavior and nonassociated yield criteria of AZ31B and ZK61M magnesium alloys
[J]. Materials Science and Engineering: A, 2019, 759: 329-345.

 


[14]李奇. ZK60镁合金板材轧制工艺研究
[D]. 合肥: 合肥工业大学, 2017.

 

Li Q. Research on Rolling Process of ZK60 Magnesium Alloy Sheet
[D]. Hefei: Hefei University of Technology, 2017.

 


[15]胡耀波, 杨生伟, 蒙万秋, 等. ZK61镁合金的磨损性能
[J]. 功能材料, 2016, 47(10): 10157-10161,10167.

 

Hu Y B, Yang S W, Meng W Q, et al. Wear characteristics of ZK61 magnesium alloy
[J]. Function Materials, 2016, 47(10): 10157-10161,10167.

 


[16]

GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法
[S].

 

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1:Method of test at room temperature
[S].

 

 


[17]钱鹏. AZ31镁合金板材制备及组织与性能研究
[D]. 哈尔滨: 哈尔滨工业大学, 2009.

 

Qian P. Fabrication of AZ31 Magnesium Alloy Sheet and Its Microstructure and Stamping Formability
[D]. Harbin: Harbin Institute of Technology, 2009.

 


[18]Lu X G, Wang Z, Cui Y, et al. Computational thermodynamics, computational kinetics, and materials design
[J]. Chinese Science Bulletin, 2014, 59(15): 1662-1671.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9