[1]何安瑞. 热轧宽带钢板形控制技术的现状及未来发展 [J]. 轧钢, 2022, 39(3): 1-10.
He A R. Present situation and future development of profile and flatness control technologies of hot rolled wide strip [J]. Steel Rolling, 2022, 39(3): 1-10.
[2]黄爽. 热轧带钢宽度超差控制技术的改进与应用 [D]. 沈阳:东北大学, 2015.
Huang S. Improvement and Application of Width Tolerance Control Technology in Hot Strip [D]. Shenyang:Northeastern University, 2015.
[3]张宏献,回士敏,马欣然. 提高热轧带钢成品的宽度控制精度 [J]. 中国冶金, 2020, 30(8): 60-63.
Zhang H X, Hui S M, Ma X R. Improvements of width controlling precision for finished hotrolled strips [J]. China Metallurgy, 2020, 30(8): 60-63.
[4]彭文,马更生,曹剑钊, 等. 热轧带钢短行程控制自适应策略 [J]. 东北大学学报:自然科学版, 2016, 37(3): 343-346.
Peng W, Ma G S, Cao J Z, et al. Adaptive strategy of short stroke control in tandem hot rolling [J]. Journal of Northeastern University:Natural Science, 2016, 37(3): 343-346.
[5]邹俊,傅新,杨华勇, 等. 粗轧基础自动化宽度控制和仿真系统研究 [J]. 钢铁, 2005,(4): 49-52.
Zou J, Fu X, Yang H Y, et al. Simulation system investigation and basic automation of width control for rough rolling [J]. Iron and Steel, 2005,(4): 49-52.
[6]陈丰, 杨子江, 王庆军, 等. 热连轧带钢生产线计算机控制系统的研发与应用 [J]. 轧钢, 2019, 36(3): 59-65.
Chen F, Yang Z J, Wang Q J, et al. Development and application of control system of hot continuous strip rolling line [J]. Steel Rolling, 2019, 36(3): 59-65.
[7]曹建国,宋纯宁,王雷雷, 等. 新一代高技术轧机电工钢矩形断面板形控制创新研究 [A].中国金属学会.第十三届中国钢铁年会论文集:4.轧制与热处理 [C].北京:冶金工业出版, 2022.
Cao J G, Song C N, Wang L L, et al. Innovation research on rectangular section for profile and flatness control of electrical steel in newgeneration hightech rolling mills [A].China Society for Metals. Proceedings of the Thirteenth China Iron and Steel Annual Conference:4.Rolling and Heat Treatment [C].Beijing:Metallurgical Industry Press,2022.
[8]Cao J G, Wei G C, Zhang J, et al. VCR and ASR technology for profile and flatness control in hot strip mills [J].Journal of Central South University of Technology, 2008, 15: 264-270.
[9]He N H, Wang C X, Yang Q. Highprecision section control technology for highstrength yoke steel strip [J]. Materials Science Forum, 2019, 4734: 212-221.
[10]李维刚, 淳李良, 李阳, 等. 不锈钢铸坯宽度优化控制模型研究及应用 [J]. 钢铁, 2021, 56(12): 75-84.
Li W G, Chun L L, Li Y, et al. Research and application of optimal control model for slab width of stainless steel [J]. Iron and Steel, 2021, 56(12): 75-84.
[11]Ji Y J, Liu S X, Zhou M C, et al. A machine learning and genetic algorithmbased method for predicting width deviation of hotrolled strip in steel production systems [J]. Information Sciences,2022,589: 360-375.
[12]陈鹏宇,隆建,杨明磊,等.基于工业数据的溶剂脱沥青装置多工况建模 [J]. 控制工程, 2020, 27(11): 2002-2009.
Chen P Y, Long J, Yang M L, et al. Multiconditional modeling of solvent deasphalting device based on industrial data [J]. Control Engineering of China, 2020, 27(11): 2002-2009.
[13]张瑞成,曹志新.基于EEMDLSTM的冷连轧机振动预测研究 [J]. 锻压技术, 2022, 47(9): 174-181.
Zhang R C, Cao Z X. Research on vibration prediction for tandem cold rolling mill based on EEMDLSTM [J]. Forging & Stamping Technology, 2022, 47(9): 174-181.
[14]董家欢,邱清盈,管成.机械剩余使用寿命预测模型的增量学习方法 [J/OL].计算机集成制造系统:1-15 [2023-05-27].
Dong J H, Qiu Q Y,Guan C. Incremental learning methods for remaining useful life prediction models of machinery [J/OL].Computer Integrated Manufacturing Systems: 1-15 [2023-05-27].
[15]孙世旭,胡小锋,夏铭远.变工况刀具破损监测的半监督增量学习方法 [J].计算机集成制造系统, 2022, 28(9): 2805-2814.
Sun S X, Hu X F, Xia M Y. Semisupervised incrementallearning method for tool breakage detection under variable operation conditions [J]. Computer Integrated Manufacturing Systems, 2022, 28(9): 2805-2814.
[16]张煜莹,陆艺,赵静.基于增量学习的数控机床故障诊断系统 [J].计量学报, 2022, 43(11): 1456-1463.
Zhang Y Y, Lu Y, Zhao J. Fault diagnosis system of numerical control machine based on incremental learning [J]. Acta Metrologica Sinica, 2022, 43(11): 1456-1463.
[17]任进,邵淑颖,何怡怡.基于增量学习的时变信道预测方法 [J].无线电工程, 2023, 53(4): 815-823.
Ren J, Shao S Y, He Y Y. Timevarying channel prediction method based on incremental learning [J]. Radio Engineering, 2023, 53(4): 815-823.
[18]彭文,陈庆安,马更生, 等. 热连轧宽度自适应模型优化 [J]. 东北大学学报:自然科学版, 2017, 38(9): 1243-1246.
Peng W, Chen Q A, Ma G S, et al. Optimization of the width adaption model in hot tandem rolling [J]. Journal of Northeastern University:Natural Science, 2017, 38(9): 1243-1246.
[19]王晓雯,张勇军,郭强, 等. 基于轧制机理和混合神经网络的热轧精轧带宽预测 [J]. 中国冶金, 2023, 33(2): 114-120.
Wang X W, Zhang Y J, Guo Q, et al. Prediction of hot strip width based on rolling mechanism and hybrid neural network [J]. China Metallurgy, 2023, 33(2): 114-120.
[20]张峥,仲兆准,李阳, 等. 基于深度学习的带钢精轧过程自由宽展预测 [J]. 中国冶金, 2022, 32(11): 121-127.
Zhang Z, Zhong Z Z, Li Y, et al. Prediction of lateral spread for hot strip finishing mill based on deep learning [J].China Metallurgy, 2022, 32(11): 121-127.
[21]宋纯宁,曹建国,王雷雷, 等. 六辊冷连轧机电工钢矩形断面控制弯辊力模型 [J]. 哈尔滨工业大学学报, 2022, 54(7): 143-150.
Song C N, Cao J G, Wang L L, et al. Model of rectangular section control roll bending force for electrical steel in sixhigh tandem cold mill [J]. Journal of Harbin Institute of Technology, 2022, 54(7): 143-150.
[22]彭文,孙佳楠,李旭东, 等. 板带热轧过程工作辊磨损预测研究 [J].塑性工程学报, 2023, 30(5): 214-225.
Peng W, Sun J N, Li X D, et al. Study on prediction of work roll wear during hot strip rolling [J]. Journal of Plasticity Engineering, 2023, 30(5): 214-225.
[23]Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system [A].Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining [C].ACM, 2016.
[24]Losing V, Hammer B, Wersing H. Incremental online learning: A review and comparison of state of the art algorithms [J]. Neurocomputing, 2018, 275: 1261-1274.
[25]朱飞,张煦尧,刘成林. 类别增量学习研究进展和性能评价 [J]. 自动化学报, 2023, 49(3): 635-660.
Zhu F, Zhang X Y, Liu C L. Class Incremental learning: A review and performance evaluation [J]. Acta Automatica Sinica, 2023, 49(3): 635-660.
[26]罗杨洋,韩锡斌. 基于增量学习算法的混合课程学生成绩预测模型研究 [J]. 电化教育研究, 2021, 42(7): 83-90.
Luo Y Y, Han X B. A model for predicting student performance in hybrid courses based on incremental learning algorithm [J].eEducation Research, 2021, 42(7): 83-90.
|