网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于增量学习树模型的带钢精轧宽度预测
英文标题:
作者:王家亮1 王景成1 2 李继超1 
单位:(1.西安工业大学 电子信息工程学院  陕西 西安710012  2.上海交通大学 自动化系  上海 200030) 
关键词:热轧带钢 精轧 变工况 自由宽展 树的集成模型 增量学习 
分类号:TG33
出版年,卷(期):页码:2024,49(2):152-160
摘要:

 针对热轧带钢在轧制过程中出现的由于换辊或其他原因导致的精轧宽展预测模型不精准、热轧领域采集数据维度高和数据量大时训练时间长等问题,提出了一种面向工况漂移的基于增量学习树模型的带钢精轧宽度预测方法。首先,根据传统精轧机理模型得出变工况产生的原因和主要特征参数;然后,将在机理与数据层次上总结得到的有效数据特征作为预测模型的输入,采用增量学习方法建立宽展预测模型;最后,通过实验设计,在实际数据上将增量学习建立的树模型与其他机器学习模型在相同指标上进行对比。结果表明,提出的基于增量学习的树模型在宽展预测中拥有较高的预测精度和较低的运行时间。

 

 Aiming at the problems of inaccurate prediction model of finish rolling width spreading due to roller change or other reasons during the rolling process of hot-rolled strip steel, and long training time when the dimension of data collected was high and the amount of data was large in the field of hot rolling, a width prediction method based on incremental learning tree model for operating condition drift was proposed. First, the causes and main characteristic parameters of the variable working conditions were obtained based on the traditional finish rolling mechanism model. Then, the effective data features summarized at the mechanism and data levels were combined as the input of the prediction model, and the width spreading prediction model was established by the incremental learning method. Finally, the tree model established by incremental learning was compared with other machine learning models with the same indicators on actual data by experimental design. The results show that the proposed tree model based on incremental learning has higher prediction accuracy and low running time in wide-spread prediction.

 
基金项目:
基金项目:国家自然科学基金资助项目(62273234);国家重点研发计划项目(2022YFE0123400);陕西省重点研发计划项目(2022GY-236)
作者简介:
作者简介:王家亮(1999-),男,硕士研究生
参考文献:

 
[1]何安瑞. 热轧宽带钢板形控制技术的现状及未来发展
[J]. 轧钢, 2022, 39(3): 1-10.


 

He A R. Present situation and future development of profile and flatness control technologies of hot rolled wide strip
[J]. Steel Rolling, 2022, 39(3): 1-10.

 


[2]黄爽. 热轧带钢宽度超差控制技术的改进与应用
[D]. 沈阳:东北大学, 2015.

 

Huang S. Improvement and Application of Width Tolerance Control Technology in Hot Strip
[D]. Shenyang:Northeastern University, 2015.

 


[3]张宏献,回士敏,马欣然. 提高热轧带钢成品的宽度控制精度
[J]. 中国冶金, 2020, 30(8): 60-63.

 

Zhang H X, Hui S M, Ma X R. Improvements of width controlling precision for finished hotrolled strips
[J]. China Metallurgy, 2020, 30(8): 60-63.

 


[4]彭文,马更生,曹剑钊, 等. 热轧带钢短行程控制自适应策略
[J]. 东北大学学报:自然科学版, 2016, 37(3): 343-346.

 

Peng W, Ma G S, Cao J Z, et al. Adaptive strategy of short stroke control in tandem hot rolling
[J]. Journal of Northeastern University:Natural Science, 2016, 37(3): 343-346.

 


[5]邹俊,傅新,杨华勇, 等. 粗轧基础自动化宽度控制和仿真系统研究
[J]. 钢铁, 2005,(4): 49-52.

 

Zou J, Fu X, Yang H Y, et al. Simulation system investigation and basic automation of width control for rough rolling
[J]. Iron and Steel, 2005,(4): 49-52.

 


[6]陈丰, 杨子江, 王庆军, 等. 热连轧带钢生产线计算机控制系统的研发与应用
[J]. 轧钢, 2019, 36(3): 59-65.

 

Chen F, Yang Z J, Wang Q J, et al. Development and application of control system of hot continuous strip rolling line
[J]. Steel Rolling, 2019, 36(3): 59-65.

 


[7]曹建国,宋纯宁,王雷雷, 等. 新一代高技术轧机电工钢矩形断面板形控制创新研究
[A].中国金属学会.第十三届中国钢铁年会论文集:4.轧制与热处理
[C].北京:冶金工业出版, 2022.

 

Cao J G, Song C N, Wang L L, et al. Innovation research on rectangular section for profile and flatness control of electrical steel in newgeneration hightech rolling mills
[A].China Society for Metals. Proceedings of the Thirteenth China Iron and Steel Annual Conference:4.Rolling and Heat Treatment
[C].Beijing:Metallurgical Industry Press,2022.

 


[8]Cao J G, Wei G C, Zhang J, et al. VCR and ASR technology for profile and flatness control in hot strip mills
[J].Journal of Central South University of Technology, 2008, 15: 264-270.

 


[9]He N H, Wang C X, Yang Q. Highprecision section control technology for highstrength yoke steel strip
[J]. Materials Science Forum, 2019, 4734: 212-221.

 


[10]李维刚, 淳李良, 李阳, 等. 不锈钢铸坯宽度优化控制模型研究及应用
[J]. 钢铁, 2021, 56(12): 75-84.

 

Li W G, Chun L L, Li Y, et al. Research and application of optimal control model for slab width of stainless steel
[J]. Iron and Steel, 2021, 56(12): 75-84.

 


[11]Ji Y J, Liu S X, Zhou M C, et al. A machine learning and genetic algorithmbased method for predicting width deviation of hotrolled strip in steel production systems
[J]. Information Sciences,2022,589: 360-375.

 


[12]陈鹏宇,隆建,杨明磊,等.基于工业数据的溶剂脱沥青装置多工况建模
[J]. 控制工程, 2020, 27(11): 2002-2009.

 

Chen P Y, Long J, Yang M L, et al. Multiconditional modeling of solvent deasphalting device based on industrial data
[J]. Control Engineering of China, 2020, 27(11): 2002-2009.

 


[13]张瑞成,曹志新.基于EEMDLSTM的冷连轧机振动预测研究
[J]. 锻压技术, 2022, 47(9): 174-181.

 

Zhang R C, Cao Z X. Research on vibration prediction for tandem cold rolling mill based on EEMDLSTM
[J]. Forging & Stamping Technology, 2022, 47(9): 174-181.

 


[14]董家欢,邱清盈,管成.机械剩余使用寿命预测模型的增量学习方法
[J/OL].计算机集成制造系统:1-15
[2023-05-27].

 

Dong J H, Qiu Q Y,Guan C. Incremental learning methods for remaining useful life prediction models of machinery
[J/OL].Computer Integrated Manufacturing Systems: 1-15
[2023-05-27].

 


[15]孙世旭,胡小锋,夏铭远.变工况刀具破损监测的半监督增量学习方法
[J].计算机集成制造系统, 2022, 28(9): 2805-2814.

 

Sun S X, Hu X F, Xia M Y. Semisupervised incrementallearning method for tool breakage detection under variable operation conditions
[J]. Computer Integrated Manufacturing Systems, 2022, 28(9): 2805-2814.

 


[16]张煜莹,陆艺,赵静.基于增量学习的数控机床故障诊断系统
[J].计量学报, 2022, 43(11): 1456-1463.

 

Zhang Y Y, Lu Y, Zhao J. Fault diagnosis system of numerical control machine based on incremental learning
[J]. Acta Metrologica Sinica, 2022, 43(11): 1456-1463.

 


[17]任进,邵淑颖,何怡怡.基于增量学习的时变信道预测方法
[J].无线电工程, 2023, 53(4): 815-823.

 

Ren J, Shao S Y, He Y Y. Timevarying channel prediction method based on incremental learning
[J]. Radio Engineering, 2023, 53(4): 815-823.

 


[18]彭文,陈庆安,马更生, 等. 热连轧宽度自适应模型优化
[J]. 东北大学学报:自然科学版, 2017, 38(9): 1243-1246.

 

Peng W, Chen Q A, Ma G S, et al. Optimization of the width adaption model in hot tandem rolling
[J]. Journal of Northeastern University:Natural Science, 2017, 38(9): 1243-1246.

 


[19]王晓雯,张勇军,郭强, 等. 基于轧制机理和混合神经网络的热轧精轧带宽预测
[J]. 中国冶金, 2023, 33(2): 114-120.

 

Wang X W, Zhang Y J, Guo Q, et al. Prediction of hot strip width based on rolling mechanism and hybrid neural network
[J]. China Metallurgy, 2023, 33(2): 114-120.

 


[20]张峥,仲兆准,李阳, 等. 基于深度学习的带钢精轧过程自由宽展预测
[J]. 中国冶金, 2022, 32(11): 121-127.

 

Zhang Z, Zhong Z Z, Li Y, et al. Prediction of lateral spread for hot strip finishing mill based on deep learning
[J].China Metallurgy, 2022, 32(11): 121-127.

 


[21]宋纯宁,曹建国,王雷雷, 等. 六辊冷连轧机电工钢矩形断面控制弯辊力模型
[J]. 哈尔滨工业大学学报, 2022, 54(7): 143-150.

 

Song C N, Cao J G, Wang L L, et al. Model of rectangular section control roll bending force for electrical steel in sixhigh tandem cold mill
[J]. Journal of Harbin Institute of Technology, 2022, 54(7): 143-150.

 


[22]彭文,孙佳楠,李旭东, 等. 板带热轧过程工作辊磨损预测研究
[J].塑性工程学报, 2023, 30(5): 214-225.

 

Peng W, Sun J N, Li X D, et al. Study on prediction of work roll wear during hot strip rolling
[J]. Journal of Plasticity Engineering, 2023, 30(5): 214-225.

 


[23]Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system
[A].Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
[C].ACM, 2016.

 


[24]Losing V, Hammer B, Wersing H. Incremental online learning: A review and comparison of state of the art algorithms
[J]. Neurocomputing, 2018, 275: 1261-1274.

 


[25]朱飞,张煦尧,刘成林. 类别增量学习研究进展和性能评价
[J]. 自动化学报, 2023, 49(3): 635-660.

 

Zhu F, Zhang X Y, Liu C L. Class Incremental learning: A review and performance evaluation
[J]. Acta Automatica Sinica, 2023, 49(3): 635-660.

 


[26]罗杨洋,韩锡斌. 基于增量学习算法的混合课程学生成绩预测模型研究
[J]. 电化教育研究, 2021, 42(7): 83-90.

 

Luo Y Y, Han X B. A model for predicting student performance in hybrid courses based on incremental learning algorithm
[J].eEducation Research, 2021, 42(7): 83-90.

 

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9