网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于双通道特征融合的热连轧厚度预测补偿
英文标题:
作者:张晓东 史靖文 白广芝 秦子轩 
单位:(中国石油大学(华东) 青岛软件学院 计算机科学与技术学院 山东 青岛 266580) 
关键词:热连轧 厚度补偿预测 长短期记忆网络 卷积神经网络 特征提取 
分类号:TG335
出版年,卷(期):页码:2024,49(2):161-171
摘要:

 针对热连轧轧制受油膜厚度、轧辊偏心等因素影响而造成精度降低的问题,提出一种基于双通道特征融合的热连轧板带厚度误差预测模型。模型由时空特征提取和多尺度特征提取两部分组成:时空特征提取部分是基于相邻机架板带厚度空间的相关性构建了前置时空矩阵(FSTM),通过卷积长短期记忆网络(ConvLSTM)提取FSTM的时空关联特征;多尺度特征提取部分是采用离散小波变换(DWT)对当前机架轧制厚度数据进行分解,得到趋势项数据和细节项数据,并采用差分自回归移动平均模型-长短期记忆网络(ARIMALSTM)和双向长短期记忆网络(BiLSTM)分别对趋势项数据和细节项数据进行特征提取。将上述特征融合后输入全连接层进行回归预测,得到热连轧板带厚度误差预测值。实验结果表明:双通道特征融合模型能有效提高厚度误差预测精度,验证了模型的有效性。

 

 For the problem of accuracy reduction in hot tandem rolling caused by factors such as oil film thickness and roll eccentricity, a thickness error prediction model for hot tandem rolling strips based on dual-channel feature fusion was proposed, which was composed of two parts, namely, spatiotemporal feature extraction and multi-scale feature extraction. For the spatiotemporal feature extraction part, a Frontal Spatio-Temporal Matrix (FSTM) was constructed based on the spatial correlation of adjacent rack plate thicknesses, and the spatiotemporal correlation features of the FSTM were extracted by the Convolutional Long Short-Term Memory Network(Conv-LSTM). For the multi-scale feature extraction part, the current rack rolling thickness data was decomposed by Discrete Wavelet Transform (DWT) to obtain trend item data and detail item data, and Autoregressive Integrated Moving Average Long Short-Term Memory Network (ARIMA-LSTM) and Bi-directional Long Short-Term Memory Network (BiLSTM) were used to extract features from the trend item data and detail item data, respectively. The above features were fused and input into the fully connected layer for regression prediction, the thickness error prediction value of the hot tandem rolling strip was obtained. Experimental results show that the dual-channel feature fusion model effectively improves the accuracy of thickness error prediction, validating the effectiveness of the model.

 
基金项目:
基金项目:国家自然基金资助项目(61801517);中央高校基本科研业务经费(19CX02029A)
作者简介:
作者简介:张晓东(1979-),男,博士,副教授
参考文献:

 
[1]Wang Y, Luo X C, Zhang F, et al. GPUbased model predictive control for continuous casting spray cooling control system using particle swarm optimization
[J]. Control Engineering Practice, 2019, 84: 349-364.


 


[2]Sun J, Hou F, Hu Y J, et al. Application of distributed model predictive control based on neighborhood optimization in gaugelooper integrated system of tandem hot rolling
[J]. Journal of Iron and Steel Research International, 2022, 30(2):277-292.

 


[3]Li B Q, Guo J R, Zhao Z Y, et al. Application on neural PID control of MNAGC in continuous hot strip rolling
[A]. 22nd Chinese Control and Decision Conference
[C]. Xuzhou: IEEE,2010.

 


[4]Meng F W, Hu Y B, Ma P Y, et al. Practical control of a cold milling machine using an adaptive PID controller
[J]. Applied Sciences, 2020, 10(7): 2516.

 


[5]Mei Y, Wang Y D, Shen H, et al. Adaptive eventtriggered fuzzy control for hot strip finishing mill via a disturbance observerbased method
[J]. Applied Mathematical Modelling, 2023, 117: 417-430.

 


[6]Li B Q, Wang L, Zhang S L, et al. Research on loop decoupling control based on fuzzy RBF neural network
[A].33rd Chinese Control and Decision Conference
[C]. Kunming:IEEE, 2021.

 


[7]Zhang Z X. PLC realization and algorithm research of cold rolling mill thickness control system based on neural network
[A].6th International Conference on Mechatronics and Intelligent Robotics
[C]. Kunming:SPIE, 2022, 12301: 848-854.

 


[8]Qian C, Hua C C, Zhang L L, et al. Adaptive neural torsional vibration suppression of the rolling mill main drive system subject to state and input constraints with sensor errors
[J]. Journal of the Franklin Institute, 2020, 357(17): 12886-12903.

 


[9]Sedykh I, Istomin V. Management of the strip cooling process using neural networks based on clustered data
[A].2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency
[C]. Russia:IEEE, 2020.

 


[10]Deng J F, Sun J, Peng W, et al. Application of neural networks for predicting hotrolled strip crown
[J]. Applied Soft Computing,2019,78:119-131.

 


[11]Huang Y, Zhou X M, Gao Z Y. Thickness prediction of thin strip cold rolling based on VBGMRBF
[J]. The International Journal of Advanced Manufacturing Technology, 2022,120(9-10): 5865-5884.

 


[12]Liu Y, Wang X J, Sun J, et al. Strip thickness and profileflatness prediction in tandem hot rolling process using mechanism ModelGuided machine learning
[J]. Steel Research International, 2023, 94(1): 1-14.

 


[13]杨静,任彦,高晓文,等.基于GAPELM的板材热连轧轧制力预测
[J].锻压技术,2022,47(1):43-48.

 

Yang J, Ren Y, Gao X W, et al. Rolling force prediction of hot strip rolling based on GAPELM
[J]. Forging & Stamping Technology, 2022,47(1):43-48.

 


[14]Ding J G, He Y H C, Kong L P,et al. Camber prediction based on fusion method with mechanism model and machine learning in plate rolling
[J]. ISIJ International, 2021, 61(10): 2540-2551.

 


[15]姬亚锋,刘瑜,宋乐宝,等.基于MSVR的热连轧板带宽度-厚度预测
[J].塑性工程学报,2022,29(4):58-64. 

 

Ji Y F, Liu Y, Song L B,et al. Widththickness prediction of hotrolled strip based on MSVR
[J]. Journal of Plasticity Engineering, 2022, 29(4): 58-64.

 


[16]Hu X, Zhang D H, Tan R J, et al. Controlled cooling temperature prediction of hotrolled steel plate based on multiscale convolutional neural network
[J]. Metals, 2022, 12(9): 1-14.

 


[17]Chen Y F, Peng L G, Wang Y, et al. Prediction of tandem coldrolled strip flatness based on AttentionLSTM model
[J]. Journal of Manufacturing Processes, 2023, 91: 110-121.

 


[18]于加学, 孙杰, 张殿华. 基于深度学习的热轧带钢头部厚度的命中预测
[J]. 钢铁, 2021, 56(9):19-25. 

 

Yu J X, Sun J, Zhang D H. Prediction of head thickness accuracy for hotrolled strip steel based on deep learning
[J]. Iron and Steel, 2021, 56(9):19-25.

 


[19]Huang S Y, Tian T. Prediction of mechanical properties of hot rolled strip based on DBN and composite quantile regression
[A].4th International Conference on Algorithms, Computing and Artificial Intelligence
[C].Sanya,2021.

 


[20]张瑞成,刘力菲,梁卫征.基于SSAELSTM模型的冷连轧机扭振预测
[J].锻压技术,2023,48(4):193-198.

 

Zhang R C, Liu L F, Liang W Z. Torsional vibration prediction on tandem cold rolling mill based on SSAELSTM
[J]. Forging & Stamping Technology, 2023,48(4):193-198.

 

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9