[1]王振华, 刘元铭, 王涛, 等. 粗轧过程中轧制力和宽展的预测与分析 [J]. 钢铁, 2022, 57(9): 95-102.
Wang Z H, Liu Y M, Wang T, et al. Prediction and analysis of rolling force and width spread in rough rolling [J]. Iron & Steel, 2022, 57(9): 95-102.
[2]张书荣. 六辊可逆冷轧机全轧程轧制力预测的方法研究 [D]. 西安:西安理工大学, 2021.
Zhang S R . Research on Rolling Force Prediction Method of Sixhigh Reversible Cold Rolling mill [D].Xi′an:Xi′an University of Technology, 2021.
[3]Bagheripoor M, Bisadi H. Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process [J]. Applied Mathematical Modelling, 2013, 37(7): 593-607.
[4]罗晓东, 柳浩, 阳辉, 等. 轧辊转速对AZ31环件轧制工艺的影响规律研究 [J]. 兵器材料科学与工程, 2015, 38(6): 61-64.
Luo X D, Liu H, Yang H, et al. Effect of roll speed on radialaxial rolling process of AZ31 ring [J]. Ordnance Material Science and Engineering, 2015, 38(6): 61-64.
[5]张坚, 双远华, 胡建华, 等. 基于改进的BP神经网络无缝钢管连轧轧制力的预测 [J]. 锻压技术, 2022, 47(5): 153- 160.
Zhang J, Shuang Y H, Hu J H, et al. Prediction on rolling force in hot rolling of wide and thick plate based on deep learning [J]. Forging & Stamping Technology, 2022, 47(5): 153-160.
[6]郭金涛, 王龙, 余建波, 等. 基于深度学习的宽厚板热轧轧制力预测 [J]. 锻压技术, 2022, 47(7): 167- 174.
Guo J T, Wang L, Yu J B, et al. Prediction on rolling force in hot rolling of wide and thick plate based on deep learning [J]. Forging & Stamping Technology, 2022, 47(7): 167- 174.
[7]马威, 李维刚, 赵云涛, 等. 基于深度学习的热连轧轧制力预测 [J]. 钢铁研究学报, 2019, 31(9): 805-815.
Ma W, Li W G, Zhao Y T, et al. Prediction of hotrolled roll force based on deep learning [J]. Journal of Iron and Steel Research, 2019, 31(9): 805-815.
[8]吕明桦. 大型环件轧制成形模拟与试验研究 [D].济南:山东建筑大学, 2019.
Lyu M H. Simulation and Experimental Study on Rolling Forming of Large Ring [D]. Jinan:Shandong Jianzhu University, 2019.
[9]He Q Q, Sun J, Zhao J Y, et al. 3D simulation of hbeam multipass hot rolling and microstructure evolution [J]. Applied Mechanics & Materials, 2013, 268-270:297-300.
[10]Dema R R, Shapovalov A N, Alontsev V V, et al. Computer simulation and research of the hot rolling process in Deform-3D [J]. Materials Today: Proceedings, 2019, 19(23): 12-15.
[11]汪建武, 李淑香, 金彪, 等. 6082铝合金汽车后上控制臂楔横轧轴坯成形模拟研究 [J]. 兵器材料科学与工程, 2022, 45(6): 70-74.
Wang J W, Li S X, Jin B, et al. Forming of simulation 6082 aluminum alloy cross wedge rolling shaft for automobile rear upper control ararm [J]. Ordnance Material Science and Engineering, 2022, 45(6): 70-74.
[12]Kumar A, Rath S, Kumar M. Simulation of plate rolling process using finite element method [J]. Materials Today: Proceedings, 2021, 42: 650-659.
[13]Li J, Li F G, Cai J, et al. Comparative investigation on the modified ZerilliArmstrong model and Arrheniustype model to predict the elevatedtemperature flow behaviour of 7050 aluminium alloy [J]. Computational Materials Science, 2013, 71: 56-65.
[14]李荣斌, 陈永强, 蒋春霞, 等. 022Cr钢的热变形行为及热加工图 [J].金属热处理, 2020, 45(7): 51-56.
Li R B, Chen Y Q, Jiang C X, et al.Hot deformation behavior and processing maps of 022Cr steel [J]. Heat Treatment of Metals, 2020, 45(7): 51-56.
[15]陈雷, 郭晓敏, 贾伟, 等. 航空用近β钛合金TC18热变形过程中流变应力预测 [J]. 燕山大学学报, 2018, 42(6): 486-492.
Chen L, Guo X M, Jia W, et al. Prediction of flow stress in thermal deformation of near-β titanium alloy TC18 for aviation [J]. Journal of Yanshan University, 2018, 42(6): 486-492.
[16]刘艳芳, 冀国良, 李雷, 等. M50NiL钢热变形过程中的物理型本构方程及微观组织演变 [J]. 材料热处理学报, 2021, 42(8): 170-179.
Liu Y F, Ji G L, Li L, et al. A physicallybased constitutive model and microstructure evolution of M50NiL steel during hot deformation [J]. Transactions of Materials and Heat Treatment, 2021, 42(8): 170-179.
[17]GB/T 19189—2011,压力容器用调质高强度钢板 [S].
GB/T 19189—2011,Quenched and tempered high strength steel plates for pressure vessels [S].
[18]向彪, 孙朝远, 陈雷. F22高强钢的热变形行为与晶粒组织预测 [J]. 塑性工程学报, 2022, 29(9): 144-150.
Xiang B, Sun C Y, Chen L. Hot deformation behavior and grain structure prediction of F22 highstrength steel [J]. Journal of Plasticity Engineering, 2022,29 (9): 144-150.
[19]罗锐, 陈乐利, 程晓农, 等. 高温合金Inconel 617B的热变形及动态再结晶行为 [J]. 压力容器, 2020, 37(10): 7-14.
Luo R, Chen L L, Cheng X N, et al. Thermal deformation and dynamic recrystallization behavior of inconel 617B superalloy [J]. Pressure Vessel Technology, 2020, 37(10): 7-14.
[20]曹辉. 07MnNiMoVDR压力容器用钢生产工艺与组织性能 [D]. 沈阳:东北大学, 2012.
Cao H.Manufacturing Process, Microstructures and Mechanical Properties of Pressure Vessel Steel 07MnNiMoVDR [D]. Shenyang:Northeastern University, 2012.
[21]罗远, 庞玉华, 孙琦, 等. 07MnNiMoDR板轧制热变形本构方程 [J]. 钢铁研究学报, 2020, 32(11): 977-983.
Luo Y, Pang Y H, Sun Q, et al. Constitutive equation for thermal deformation of 07MnNiMoDR plate in rolling [J]. Journal of Iron and Steel Research, 2020, 32(11): 977-983.
[22]Ji G L, Li L, Qin F L, et al. Comparative study of phenomenological constitutive equations for an asrolled M50NiL steel during hot deformation [J]. Journal of Alloys and Compounds, 2017, 695: 2389-2399.
[23]孙宇, 周琛, 万志鹏, 等. 金属材料动态再结晶模型研究现状 [J]. 材料导报, 2017, 31(13): 12-16.
Sun Y, Zhou C, Wan Z P, et al. Current research status of dynamic recrystallization model of metallic materials [J]. Materials Reports, 2017, 31(13): 12-16.
[24]王锡臣. 中厚板轧机轧制参数模型的研究 [D]. 秦皇岛:燕山大学, 2009.
Wang X C. Research on Rolling Parameter Model of Plate Mill [D]. Qinhuangdao:Yanshan University, 2009.
|