网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于神经网络-遗传算法的泵体零件热锻模具磨损与应力分析
英文标题:
作者:刘寿军1 肖开永2 牛腾1 王永2 王雷刚1 
单位:(1.江苏大学 材料科学与工程学院 江苏 镇江 212013 2.昆山惠众机电有限公司 江苏 昆山 215331) 
关键词:神经网络 遗传算法 Archard磨损模型 锻造温度 模具磨损深度 
分类号:TG316.3
出版年,卷(期):页码:2024,49(2):208-214
摘要:

 基于Archard磨损模型和BP神经网络-遗传算法,采用有限元模拟研究泵体零件锻造过程中工艺参数对模具的磨损深度及最大应力的影响规律。首先,选取锻造温度、预热温度、摩擦因数、硬度和下压速度进行5因素5水平正交试验,借助灰色关联的分析确定关键影响因子,即锻造温度和摩擦因数。然后,采用拉丁超立方抽样法对关键影响因子随机取样,并采用DEFORM软件进行模拟,再将锻造温度和摩擦因数作为输入,将磨损深度和最大应力作为输出,构建2×12×2的神经网络-遗传算法优化模型,确定最优锻造温度为481.6 ℃、摩擦因数为0.38,此时最小磨损深度为1.44×10-5 mm、最大应力为1362 MPa。最后,通过实际生产进行验证,得到磨损深度和最大应力的模拟值与预测值吻合,相对误差仅为0.7%和4.0%,主要磨损区域和应力分布情况与实际生产基本吻合,验证了优化模型的可行性。

 

 Based on Archard wear model and BP neural network-genetic algorithm, the influence laws of process parameters on die wear depth and maximum stress during the forging process of pump body parts were studied by finite element simulation. Firstly, the orthogonal test of five factors and five levels was conducted by selecting forging temperature, preheating temperature, friction coefficient, hardness and pressing speed, and the key influencing factors,namely forging temperature and friction factor were determined by grey correlation analysis. Then, the key influencing factors were randomly sampled by Latin hypercube sampling method, and the simulation was conducted by software DEFORM. Furthermore, taking forging temperature and friction coefficient as the input and wear depth and maximum stress as the output, a 2×12×2 neural network-genetic algorithm optimization model was constructed, and the optimum process parameters were determined as the forging temperature of 481.6 ℃, the friction coefficient of 0.38, the minimum wear depth of 1.44 ×10-5 mm and the maximum stress of 1362 MPa. Finally, through actual production verification, the simulated values of wear depth and maximum stress were consistent with the predicted values, with the relative errors of only 0.7% and 4.0%, and the main wear area and the stress distribution were basically consistent with the actual production, verifying the feasibility of the optimized model.

 
基金项目:
基金项目:国家自然科学基金资助项目(51775249)
作者简介:
作者简介:刘寿军(1999-),男,硕士研究生
参考文献:

 


 


[1]刘洋,李峰光,刘建永,等. 基于CAE分析的热锻模具磨损部位预测及验证
[J]. 湖北汽车工业学院学报, 2021, 35(2): 58-63,69.

 

Liu Y, Li F G, Liu J Y, et al. Prediction and verification of wear parts of hot forging dies based on CAE analysis
[J]. Journal of Hubei University of Automotive Technology, 2021, 35 (2):58-63,69.

 


[2]白植雄,郑铭达,王宇斌,等.4Cr5Mo2V钢曲轴热锻模具失效分析
[J].金属热处理,2019,44(1):214-218.

 

Bai Z X, Zheng M D, Wang Y B, et al. Failure analysis of hot forging die for 4Cr5Mo2V steel crankshaft
[J]. Heat Treatment of Metals, 2019,44 (1):214-218.

 


[3]车路长,蒋平,刘俊,等.Ti-6Al-4V钛合金筋板类吊挂锻造成形工艺优化及模具磨损研究
[J].精密成形工程,2022,14(7):106-115.

 

Che L C, Jiang P, Liu J, et al.Ti-6Al-4V titanium alloy rib plate hanging forging process optimization and die wear research
[J]. Journal of Netshape Forming Engineering, 2022,14 (7):106-115.

 


[4]马敬敬,李梦婷.基于神经网络的6A02铝合金连接板锻造工艺优化
[J].热加工工艺,2023,(7):106-109.

 

Ma J J, Li M T. Optimization of forging process of 6A02 aluminum alloy connecting plate based on neural network
[J]. Hot Working Technology,2023,(7):106-109.

 


[5]初红艳,赵凯林,程强.盘形锻件等效应力分析及神经网络预测
[J].北京工业大学学报,2021,47(2):103-111.

 

Chu H Y, Zhao K L, Cheng Q. Equivalent stress analysis and neural network prediction of disc forgings
[J]. Journal of Beijing University of Technology, 2021, 47(2):103-111.

 


[6]李月超,李婷.基于Deform-3D的带齿轴套锻造工艺仿真与实践
[J].锻压技术,2022,47(6):93-98.

 

Li Y C, Li T. Forging process simulation and practice of gear sleeve based on Deform-3D
[J].Forging & Stamping Technology, 2022,47(6):93-98.

 


[7]Archard J F. Microscopic aspects of adhesion and lubrication
[J]. Tribology International, 1982, 15(5): 242.

 


[8]Jahamir S, Suh N P. The delamination theory of wear and the wear of a composite surface
[J]. Wear, 1975, 32(1): 33-49.

 


[9]胡建军,李小平.DEFORM-3D塑性成形CAE应用教程
[M].北京:北京大学出版社, 2011.

 

Hu J J, Li X P. DEFORM-3D Plastic Forming CAE Application Tutorial
[M]. Beijing:Peking University Press, 2011.

 


[10]Equbal M I, Equbal A, Equbal M A, et al. Optimisation of forging parameters of 35C8 steel using grey relational analysis
[J]. International Journal of Microstructure and Materials Properties,2018,13(3-4):198.

 


[11]丁世林,黄海松,康佩栋,等.基于灰色关联分析的7050铝合金轮毂锻造工艺优化
[J].铸造技术,2018,39(5):1045-1049.

 

Ding S L, Huang H S, Kang P D, et al. Optimization of forging process of 7050 aluminum alloy wheel hub based on grey correlation analysis
[J]. Foundry Technology, 2018,39 (5):1045-1049.

 


[12]梁强,张贤明,杜彦斌,等.基于灰色关联分析的齿环热精锻成形工艺参数优化
[J].计算机集成制造系统,2022,28(4):1020-1029.

 

Liang Q, Zhang X M, Du Y B,et al. Optimization of hot precision forging process parameters of gear ring based on grey relational analysis
[J].Computer Integrated Manufacturing Systems,2022,28(4):1020-1029.

 


[13]倪红梅,王维刚,李敏,等.基于遗传算法和BP神经网络的裙座锻造结构优化设计
[J].压力容器,2008,(9):20-24.

 

Ni H M, Wang W G, Li M, et al. Optimization design of skirt forging structure based on genetic algorithm and BP neural network
[J].Pressure Vessel Technology, 2008,(9):20-24.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9