[1]杜金亮, 冯运莉, 张颖隆. 新型汽车用Q&P钢的研究现状与发展趋势 [J]. 材料导报, 2021, 35(15): 15189-15196.
Du J L, Feng Y L, Zhang Y L. Research status and development trend of new Q&P steel for automobiles [J]. Materials Reports, 2021, 35 (15): 15189-15196.
[2]赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望 [J]. 钢铁研究学报, 2020, 32(12): 1059-1076.
Zhao Z Z, Chen W J, Gao P F, et al. Research progress and prospects of advanced highstrength automotive steel [J]. Journal of Iron and Steel Research, 2020, 32 (12): 1059-1076.
[3]金学军, 龚煜, 韩先洪, 等. 先进热成形汽车钢制造与使用的研究现状与展望 [J]. 金属学报, 2020, 56(4):411-428.
Jin X J, Gong Y, Han X H, et al. Research status and prospects for the manufacturing and use of advanced hot formed automotive steel [J]. Acta Metallurgica Sinica, 2020, 56 (4): 411-428.
[4]王存宇, 常颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术 [J].金属学报, 2020,56(4):400-410.
Wang C Y, Chang Y, Zhou F L, et al. Theory and technology of M3 structure regulation for high strength and high plasticity third generation automotive steel [J]. Acta Metallurgica Sinica, 2020,56 (4): 400-410.
[5]Azizi A, Abedi H R,Saboori A. Work hardening behavior and substructure evolution of a lowdensity steel during compressive deformation [J]. Journal of Materials Research and Technology,2022,21: 4200-4211.
[6]王明明, 张晓妍, 肖亚茹, 等. 汽车用高强塑积钢关键研究进展之一: Q&P钢的研究进展 [J].材料热处理学报, 2019, 40(6): 11-19.
Wang M M, Zhang X Y, Xiao Y Y, et al. One of the key research advances in highstrength plastic deposited steel for automobiles: Research progress in Q&P steel [J]. Transactions of Materials and Heat Treatment, 2019, 40 (6): 11-19.
[7]苏张磊, 李玮, 罗志敏. 高强塑积汽车用中锰钢的热变形与组织性能 [J]. 锻压技术,2022, 47(8): 241-248.
Su Z L, Li W, Luo Z M. Hot deformation and microstructure properties of highstrength plastic deposited medium manganese steel for automobiles [J]. Forging & Stamping Technology, 2022, 47 (8): 241-248.
[8]樊立峰, 亢泽, 张志朋, 等. 逆相变热处理时间对冷轧中锰钢组织和性能的影响 [J]. 材料热处理学报, 2022,43(6):110-119.
Fan L F, Kang Z, Zhang Z P, et al. The effect of reverse phase transformation heat treatment time on the microstructure and properties of cold rolled medium manganese steel [J]. Transactions of Materials and Heat Treatment, 2022,43 (6): 110-119.
[9]刘志伟, 王书勤, 罗凤亮. 固溶处理对汽车用FeMnAlC高强低密度钢组织与力学性能的影响 [J]. 热加工工艺,2020,49(18):111-115.
Liu Z W, Wang S Q, Luo F L. The effect of solid solution treatment on the microstructure and mechanical properties of FeMnAlC highstrength lowdensity steel for automotive use [J]. Hot Working Technology, 2020,49 (18): 111-115.
[10]GB/T 228.1-2021, 金属材料拉伸试验第1部分:室温试验方法 [S].
GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[11]Wang W J, Man T H,Zhang M, et al. δferrite dynamic recrystallization behavior during thermal deformation in Fe-32Mn-11Al-0.9C low density steel [J]. Journal of Materials Research and Technology, 2022, 18: 1345-1357.
[12]Wang W S, Zhu H Y,Zhou J, et al. Interaction between oxide inclusions and lowdensity steel during heat treatment [J]. Metallurgical and Materials Transactions B, 2022, 53(5): 2991-3002.
[13]时红宇. 汽车用钢的显微组织和力学及耐磨性能研究 [J]. 太原学院学报:自然科学版, 2021, 39(3):54-59.
Shi H Y. Study on the microstructure, mechanical properties, and wear resistance of automotive steel [J]. Journal of Taiyuan University:Natural Science Edition, 2021, 39 (3): 54-59.
[14]任平, 陈兴品, 王存宇, 等. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响 [J]. 金属学报, 2022,58(6):771-780.
Ren P, Chen X P, Wang C Y, et al The effect of pre deformation and dual stage aging on the microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low density steel [J].Acta Metallurgica Sinica,2022, 58 (6): 771-780.
[15]Park K T, Hwang S W, Son C Y, et al. Effects of heat treatment on microstructure and tensile properties of a Fe-27Mn-12Al-0.8C lowdensity steel [J]. JOM, 2014, 66(9): 1828-1836.
[16]王瑞, 张丽凤, 王社则, 等. 低密度汽车钢的显微组织与氢脆性能 [J]. 上海金属,2020, 42(4): 6-10.
Wang R, Zhang L F, Wang S Z, et al. Microstructure and hydrogen embrittlement properties of low density automotive steel [J]. Shanghai Metals, 2020, 42 (4): 6-10.
[17]Peng W, Gao X Q, Gao X F, et al. Effect of microstructure evolution in austenite zone on mechanical properties of Fe-10Mn-5.5Al-0.25C steel [J]. Materials & Design, 2020, 196: 109163-109171.
[18]林方敏, 邢梅, 唐立志, 等. FeMnAlC系低密度钢及其强韧化机制研究进展 [J]. 材料导报, 2023,37(5): 162-169.
Lin F M, Xing M, Tang L Z, et al. Research progress on FeMnAlC low density steel and its strengthening and toughening mechanism [J]. Materials Reports,2023,37(5): 162-169.
[19]徐越鹏. 热处理对汽车用高强低密度钢组织及性能的影响 [D].重庆:重庆大学, 2017.
Xu Y P. The Effect of Heat Treatment on the Microstructure and Properties of Highstrength Lowdensity Steel for Automobiles [D]. Chongqing:Chongqing University, 2017.
[20]Liu Y X, Liu M X, Zhang J L, et al. Microstructure and mechanical properties of a Fe-28Mn-9Al-1.2C-(0,3,6,9)Cr austenitic lowdensity steel [J]. Materials Science and Engineering: A, 2021, 821:141583-141592.
[21]沈国慧, 胡斌, 杨占兵, 等. 回火温度对含δ铁素体高铝中锰钢力学性能和显微组织的影响 [J]. 金属学报, 2022, 58(2):165-174.
Shen G H, Hu B, Yang Z B, et al. Influence of tempering temperature on mechanical properties and microstructures of highAlcontained medium Mn steel having δferrite [J].Acta Metallurgica Sinica, 2022, 58 (2): 165-174.
[22]刘赛娅, 李少华, 柏慧, 等. 退火和时效对Fe-12Mn-7Al-0.6C-0.5V低密度钢组织性能的影响 [J]. 材料与冶金学报, 2020,19(2):134-141.
Liu S Y, Li S H, Bai H, et al. The effect of annealing and aging on the microstructure and properties of Fe-12Mn-7Al-0.6C-0.5V low density steel [J]. Journal of Materials and Metallurgy, 2020,19 (2): 134-141.
[23]Dolzhenko P D, Valiev R Z, Belyakov A N, et al. Effect of multiple forging and annealing on microstructure and mechanical properties of a highmanganese steel [J]. IOP Conference Series: Materials Science and Engineering, 2021, 1014(1):12008-12012.
|