网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
固溶处理对高强轻质汽车钢组织和性能的影响
英文标题:
作者:李韬1 刘文福1 徐越鹏2 罗志辉3 
单位:(1.河南农业职业学院 智能制造学院 河南 郑州 451450 2.河南科技大学 材料科学与工程学院 河南 洛阳 471000   3.洛阳中重铸锻有限责任公司 河南 洛阳 471000) 
关键词:Fe-30Mn-10Al-2C钢 固溶 时效 微观组织 拉伸性能 
分类号:TG146.2
出版年,卷(期):页码:2024,49(2):227-233
摘要:

 采用金相显微镜、硬度计、拉伸试验机等方法,研究了固溶处理对锻态和和时效态高强轻质汽车用Fe-30Mn-10Al-2C钢的物相组成、显微组织和拉伸性能的影响,并分析了其作用机理。结果表明:随着固溶温度从950 ℃上升至1200 ℃,不同固溶时间下固溶态汽车钢的显微硬度逐渐减小;相同时效工艺下,固溶温度越高,汽车钢的显微硬度越大,固溶温度为1100 ℃时汽车钢的硬化特征相对明显。随着固溶温度的升高,固溶态汽车钢的晶粒尺寸逐渐增大;当固溶温度升高至1150 ℃及以上时,汽车钢中出现了δ高温铁素体相。固溶时间和时效工艺相同时,时效态汽车钢的强塑积会随着固溶温度升高先增后减,1100 ℃/1 h + 500 ℃/4 h是汽车钢适宜的固溶和时效热处理制度,此时汽车钢具有最高的强塑积,为45.66 GPa·%。

 

 The influences of solution treatment on the phase composition, microstructure and tensile properties of high-strength lightweight automotive Fe-30Mn-10Al-2C steels in forging and aging states were studied by metallographic microscope, hardness tester, tensile testing machine and other methods, and its mechanism of action was analyzed. The results show that the microhardness of automotive steel in solid solution state gradually decreases with the increasing of solution temperature from 950 ℃ to 1200 ℃ at different solution time. Under the same aging process, the higher the solution temperature, the greater the microhardness of automotive steel. When the solution temperature is 1100 ℃, the hardening characteristics of automotive steel are relatively obvious. With the increasing of solution temperature, the grain size of automotive steel in solid solution state gradually increases. When the solid solution temperature rises to 1150 ℃ and above, high temperature ferrite phase δ appears in the automotive steel. When the solid solution time and the aging process are the same, the strength-ductility balance of aged automotive steel first increases and then decreases as the solid solution temperature increases. 1100 ℃/1 h+500 ℃/4 h is the suitable solid solution and aging heat treatment systems for automotive steel. At this time, the automotive steel has the highest strength-ductility balance of 45.66 GPa·%.

 
基金项目:
基金项目:河南省杰出人才创新基金资助项目(182102610014)
作者简介:
作者简介:李韬(1980-),男,硕士,讲师
参考文献:

 
[1]杜金亮, 冯运莉, 张颖隆. 新型汽车用Q&P钢的研究现状与发展趋势
[J]. 材料导报, 2021, 35(15): 15189-15196.


 

Du J L, Feng Y L, Zhang Y L. Research status and development trend of new Q&P steel for automobiles
[J]. Materials Reports, 2021, 35 (15): 15189-15196.

 


[2]赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望
[J]. 钢铁研究学报, 2020, 32(12): 1059-1076.

 

Zhao Z Z, Chen W J, Gao P F, et al. Research progress and prospects of advanced highstrength automotive steel
[J]. Journal of Iron and Steel Research, 2020, 32 (12): 1059-1076.

 


[3]金学军, 龚煜, 韩先洪, 等. 先进热成形汽车钢制造与使用的研究现状与展望
[J]. 金属学报, 2020, 56(4):411-428.

 

Jin X J, Gong Y, Han X H, et al. Research status and prospects for the manufacturing and use of advanced hot formed automotive steel
[J]. Acta Metallurgica Sinica, 2020, 56 (4): 411-428.

 


[4]王存宇, 常颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术
[J].金属学报, 2020,56(4):400-410.

 

Wang C Y, Chang Y, Zhou F L, et al. Theory and technology of M3 structure regulation for high strength and high plasticity third generation automotive steel
[J]. Acta Metallurgica Sinica, 2020,56 (4): 400-410.

 


[5]Azizi A, Abedi H R,Saboori A. Work hardening behavior and substructure evolution of a lowdensity steel during compressive deformation
[J]. Journal of Materials Research and Technology,2022,21: 4200-4211.

 


[6]王明明, 张晓妍, 肖亚茹, 等. 汽车用高强塑积钢关键研究进展之一: Q&P钢的研究进展
[J].材料热处理学报, 2019, 40(6): 11-19.

 

Wang M M, Zhang X Y, Xiao Y Y, et al. One of the key research advances in highstrength plastic deposited steel for automobiles: Research progress in Q&P steel
[J]. Transactions of Materials and Heat Treatment, 2019, 40 (6): 11-19.

 


[7]苏张磊, 李玮, 罗志敏. 高强塑积汽车用中锰钢的热变形与组织性能
[J]. 锻压技术,2022, 47(8): 241-248.

 

Su Z L, Li W, Luo Z M. Hot deformation and microstructure properties of highstrength plastic deposited medium manganese steel for automobiles
[J]. Forging & Stamping Technology, 2022, 47 (8): 241-248.

 


[8]樊立峰, 亢泽, 张志朋, 等. 逆相变热处理时间对冷轧中锰钢组织和性能的影响
[J]. 材料热处理学报, 2022,43(6):110-119.

 

Fan L F, Kang Z, Zhang Z P, et al. The effect of reverse phase transformation heat treatment time on the microstructure and properties of cold rolled medium manganese steel
[J]. Transactions of Materials and Heat Treatment,  2022,43 (6): 110-119.

 


[9]刘志伟, 王书勤, 罗凤亮. 固溶处理对汽车用FeMnAlC高强低密度钢组织与力学性能的影响
[J]. 热加工工艺,2020,49(18):111-115.

 

Liu Z W, Wang S Q, Luo F L. The effect of solid solution treatment on the microstructure and mechanical properties of FeMnAlC highstrength lowdensity steel for automotive use
[J]. Hot Working Technology, 2020,49 (18): 111-115.

 


[10]GB/T 228.1-2021, 金属材料拉伸试验第1部分:室温试验方法
[S].

 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature
[S].

 


[11]Wang W J, Man T H,Zhang M, et al. δferrite dynamic recrystallization behavior during thermal deformation in Fe-32Mn-11Al-0.9C low density steel
[J]. Journal of Materials Research and Technology, 2022, 18: 1345-1357.

 


[12]Wang W S, Zhu H Y,Zhou J, et al. Interaction between oxide inclusions and lowdensity steel during heat treatment
[J]. Metallurgical and Materials Transactions B, 2022, 53(5): 2991-3002.

 


[13]时红宇. 汽车用钢的显微组织和力学及耐磨性能研究
[J]. 太原学院学报:自然科学版, 2021, 39(3):54-59.

 

Shi H Y. Study on the microstructure, mechanical properties, and wear resistance of automotive steel
[J]. Journal of Taiyuan University:Natural Science Edition, 2021, 39 (3): 54-59.

 


[14]任平, 陈兴品, 王存宇, 等. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响
[J]. 金属学报, 2022,58(6):771-780.

 

Ren P, Chen X P, Wang C Y, et al The effect of pre deformation and dual stage aging on the microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low density steel
[J].Acta Metallurgica Sinica,2022, 58 (6): 771-780.

 


[15]Park K T, Hwang S W, Son C Y, et al. Effects of heat treatment on microstructure and tensile properties of a Fe-27Mn-12Al-0.8C lowdensity steel
[J]. JOM, 2014, 66(9): 1828-1836.

 


[16]王瑞, 张丽凤, 王社则, 等. 低密度汽车钢的显微组织与氢脆性能
[J]. 上海金属,2020, 42(4): 6-10.

 

Wang R, Zhang L F, Wang S Z, et al. Microstructure and hydrogen embrittlement properties of low density automotive steel
[J]. Shanghai Metals, 2020, 42 (4): 6-10.

 


[17]Peng W, Gao X Q, Gao X F, et al. Effect of microstructure evolution in austenite zone on mechanical properties of Fe-10Mn-5.5Al-0.25C steel
[J]. Materials & Design, 2020, 196: 109163-109171.

 


[18]林方敏, 邢梅, 唐立志, 等. FeMnAlC系低密度钢及其强韧化机制研究进展
[J]. 材料导报, 2023,37(5): 162-169.

 

Lin F M, Xing M, Tang L Z, et al. Research progress on FeMnAlC low density steel and its strengthening and toughening mechanism
[J]. Materials Reports,2023,37(5): 162-169.

 


[19]徐越鹏. 热处理对汽车用高强低密度钢组织及性能的影响
[D].重庆:重庆大学, 2017.

 

Xu Y P. The Effect of Heat Treatment on the Microstructure and Properties of Highstrength Lowdensity Steel for Automobiles
[D]. Chongqing:Chongqing University, 2017.

 


[20]Liu Y X, Liu M X, Zhang J L, et al. Microstructure and mechanical properties of a Fe-28Mn-9Al-1.2C-(0,3,6,9)Cr austenitic lowdensity steel
[J]. Materials Science and Engineering: A, 2021, 821:141583-141592.

 


[21]沈国慧, 胡斌, 杨占兵, 等. 回火温度对含δ铁素体高铝中锰钢力学性能和显微组织的影响
[J]. 金属学报, 2022, 58(2):165-174.

 

Shen G H, Hu B, Yang Z B, et al. Influence of tempering temperature on mechanical properties and microstructures of highAlcontained medium Mn steel having δferrite
[J].Acta Metallurgica Sinica, 2022, 58 (2): 165-174.

 


[22]刘赛娅, 李少华, 柏慧, 等. 退火和时效对Fe-12Mn-7Al-0.6C-0.5V低密度钢组织性能的影响
[J]. 材料与冶金学报, 2020,19(2):134-141.

 

Liu S Y, Li S H, Bai H, et al. The effect of annealing and aging on the microstructure and properties of Fe-12Mn-7Al-0.6C-0.5V low density steel
[J]. Journal of Materials and Metallurgy, 2020,19 (2): 134-141.

 


[23]Dolzhenko P D, Valiev R Z, Belyakov A N, et al. Effect of multiple forging and annealing on microstructure and mechanical properties of a highmanganese steel
[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1014(1):12008-12012.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9