网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
含V型缺口钛合金圆棒拉伸过程声发射特性研究
英文标题:
作者:钟斌1 杨会1 强轩轩1 于正洋1 赵升吨2 
单位:(1.西安科技大学 机械工程学院 陕西 西安 710054 2.西安交通大学 机械工程学院 陕西 西安 710049) 
关键词:V型缺口 TC4钛合金 拉伸 声发射 特征参数 
分类号:TH142.2
出版年,卷(期):页码:2024,49(2):247-254
摘要:

 采用声发射无损检测技术对含环状V型缺口TC4钛合金试样的匀速拉伸过程进行监测,探讨了含不同V型缺口的TC4钛合金试样在拉伸过程中不同变形阶段对钛合金声发射特征参数的影响。结果表明:声发射信号的分布情况与拉伸过程中的每个阶段相对应。在整个拉伸断裂过程中,不同V型缺口试样的幅值信号主要分布在40~70 dB之间,整个塑性变形过程中仅出现少量高幅值信号,而试样在断裂瞬间均出现100 dB的高幅值信号。声发射累积计数和累积能量随着损伤的累积而增加。此外,不同V型缺口的TC4钛合金试样从弹性变形到断裂各阶段的声发射的累积能量和累积计数曲线均有明显的阶段性特征,曲线斜率大小相似,累积计数和累积能量数值大小接近。

 

 The uniform tensile process of TC4 titanium alloy samples with circular V-notch was monitored by the acoustic emission non-destructive testing technology, and the influences of different deformation stages on the acoustic emission characteristic parameters of TC4 titanium alloy sample with different V-notches during the tensile process were explored. The results show that the distribution of acoustic emission signals corresponds to each stage of the tensile process. During the entire tensile fracture process, the amplitude signals of samples with different V-notches are mainly distributed between 40-70 dB, only a small amount of high-amplitude signals appear during the entire plastic deformation process, and the high amplitude signals of 100 dB appear at the moment of fracture for all samples. The accumulated count and accumulated energy of acoustic emission increase with the accumulation of damage. In addition, TC4 titanium alloy samples with different V-notches exhibit obvious stage characteristics in the accumulated energy and accumulated count curves of acoustic emission from elastic deformation stage to fracture stage, the slopes of the curves are similar, and the values of accumulated count and accumulated energy are similar. 

基金项目:
基金项目:国家自然科学基金资助项目(51705416)
作者简介:
作者简介:钟斌(1984-),男,博士,副教授
参考文献:

 
[1]Luo P, Yao W X, Li P. A notch critical plane approach of multiaxial fatigue life prediction for metallic notched specimens
[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42 (4): 854-870.


 


[2]Glinka G, Buczyński A, Ruggeri A. Elasticplastic stressstrain analysis of notches under nonproportional loading paths
[J]. Archives of Mechanics, 2000, 52 (4): 589-607.

 


[3]Tao Z Q, Zhang M, Zhu Y, et al. Notch fatigue life prediction considering nonproportionality of local loading path under multiaxial cyclic loading
[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 43 (4): 59-67.

 


[4]Lazzarin P, Tovo R. A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches
[J]. International Journal of Fracture, 1996, 78 (1): 3-19.

 


[5]Susmel L. A unifying approach to estimate the high-cycle fatigue strength of notched components subjected to both uniaxial and multiaxial cyclic loadings
[J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27 (4): 26-32.

 


[6]赵仁峰,郑建明,王权岱,等. 不同类型缺口对管材精密下料过程中微裂纹萌生的影响
[J]. 塑性工程学报,2018,25 (1): 276-282.

 

Zhao R F, Zheng J M, Wang Q D, et al. Effects of different types of notches on microcrack initiation during precise blanking
[J]. Journal of Plasticity Engineering, 2018, 25 (1): 276-282.

 


[7]张鑫明. 受载条件下不锈钢表面微裂纹损伤的非线性超声检测研究
[D]. 大连: 大连理工大学,2021.

 

Zhang X M. Study on Nonlinear Ultrasonic Detection of Surface Microcrack Damage of Stainless Steel Under Load
[D]. Dalian: Dalian University of Technology, 2021.

 


[8]圣兆兴,刘仕远,王飞,等.铸钢和铸铝件射线照相检测缺陷检出能力研究
[A].中国铁道学会材料工艺委员会,山东瑞祥模具有限公司,中国铁道科学研究院集团有限公司金属及化学研究所.中国铁道学会材料工艺委员会第五届无损检测学组磁粉、渗透、涡流及射线无损检测学术交流会论文集
[C].济宁:中车戚墅堰机车车辆工艺研究所有限公司,2018.

 

Sheng Z X, Liu S Y, Wang F, et al. Research on defect detection ability of radiographic inspection of cast steel and cast aluminum
[A]. Materials Technology Committee of China Railway Society, Shandong Ruixiang Mold Co., Ltd., Metal and Chemical Research Institute of China Academy of Railway Science Group Co., Ltd.. Proceedings of the 5th Nondestructive Testing Academic Exchange Conference on Magnetic Particle, Permeation, Eddy Current and Xray Nondestructive Testing of Materials Technology Committee of China Railway Society
[C]. Jining:CRRC Qishuyan Locomotive and Vehicle Technology Research Institute Co., Ltd.,2018.

 


[9]徐桂荣,刘甜甜,关雪松. 航空产品磁粉检测与渗透检测分析
[J]. 兵器材料科学与工程,2021,44 (6): 123-127.

 

Xu G R, Liu T T, Guan X S. Magnetic particle testing and penetrant testing analysis of aviation products
[J]. Weapon Material Science and Engineering, 2021, 44 (6): 123-127.

 


[10]吴克勤,谢里阳,倪爱伟. 某钛合金材料拉伸过程的声发射特征
[J]. 机械制造,2007,(1): 50-52.

 

Wu K Q, Xie L Y, Ni A W. Acoustic emission characteristics of a titanium alloy during stretching
[J]. Machinery Manufacturing, 2007, (1): 50-52.

 


[11]张昭,肖迎春,王倩,等. TC18钛合金疲劳断裂过程声发射信号特征分析
[J]. 航空工程进展,2015,6(4): 502-506.

 

Zhang Z, Xiao Y C, Wang Q, et al. Analysis of acoustic emission signal characteristics during fatigue fracture of TC18 titanium alloy
[J].Progress of Aviation Engineering, 2015, 6 (4): 502-506.

 


[12]龙小江,李秋锋,何才厚,等. 不同拉伸速率下钢材损伤的声发射监测评价
[J]. 振动与冲击,2017,36(7): 219-225.

 

Long X J, Li Q F, He C H, et al. Acoustic emission monitoring and evaluation of steel damage under different tensile rates
[J]. Vibration and Shock, 2017, 36 (7): 219-225.

 


[13]Mukhopadhyay C K, Jayakumar T, Haneef T K, et al. Use of acoustic emission and ultrasonic techniques for monitoring crack initiation/growth during ratcheting studies on 304LN stainless steel straight pipe
[J]. International Journal of Pressure Vessels & Piping, 2014, 116:27-36.

 


[14]Elforjani M, Mba D. Detecting natural crack initiation and growth in slow speed shafts with the Acoustic Emission technology
[J]. Engineering Failure Analysis, 2009, 16(7): 2121-2129.

 


[15]Qin G, Liu Z. Development of acoustic emission testing system
[J]. Journal of Test and Measurement Technology, 2004, 18 (3): 274-279.

 


[16]沈功田. 声发射检测技术及应用
[M]. 北京:科学出版社,2015.

 

Shen G T. Acoustic Emission Detection Technology and Application
[M]. Beijing: Science Press, 2015.

 


[17]AlDossary S, Hamzah R I R, Mba D. Observations of changes in acoustic emission waveform for varying seeded defect sizes in a rolling element bearing
[J]. Applied Acoustics, 2009, 70 (1): 58-81.

 


[18]阳能军,姚春江,袁晓静,等. 基于声发射的材料损伤检测技术
[M]. 北京: 北京航空航天大学出版社,2016.

 

Yang N J, Yao C J, Yuan X J, et al. Material Damage Detection Technology Based on Acoustic Emission
[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2016.

 


[19]黄华斌,智伟,王竹林,等.飞机铆接壁板疲劳损伤的声发射检测
[J]. 无损检测,2020,42(12): 12-14,75.

 

Huang H B, Zhi W, Wang Z L, et al. Acoustic emission detection of fatigue damage of aircraft riveted panel
[J]. Nondestructive Testing, 2020, 42 (12): 12-14,75.

 


[20]史悦,董丽虹,王海斗,等. 声发射技术在疲劳失效领域的研究进展
[J]. 材料导报,2016,30 (3): 109-115.

 

Shi Y, Dong L H, Wang H D, et al. Research progress of acoustic emission technology in the field of fatigue failure
[J]. Materials Reports, 2016, 30 (3): 109-115.

 


[21]鲁涛,敬石开,聂靖轩,等. 电弧增材制造钛合金成形工艺与过程控制
[J]. 稀有金属,2023,47 (5): 618-632.

 

Lu T, Jing S K, Nie J X, et al. Wire arc additive manufacturing of titanium alloy: Forming process and process control
[J]. Chinese Journal of Rare Metals, 2023, 47 (5): 618-632.

 


[22]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法
[S].

 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature
[S].

 


[23]魏子航,李新民,张先辉. TB6钛合金疲劳试验过程中的声发射信号特征
[J]. 南昌航空大学学报:自然科学版,2019,33 (4): 94-100. 

 

Wei Z H, Li X M, Zhang X H. Acoustic emission signal characteristics during fatigue test of TB6 titanium alloy
[J]. Journal of Nanchang Aviation University:Natural Science Edition, 2019, 33 (4): 94-100.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9