[1]李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(S1): 280-282.
Li Y, Zhao Y Q, Zeng W D. Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(S1): 280-282.
[2]刘志成, 张利军, 薛祥义. 关于先进战斗机结构制造用钛概述[J]. 航空制造技术, 2017, (6): 76-83.
Liu Z C, Zhang L J, Xue X Y. Overview about advanced fighter aircraft structure made with titanium[J]. Aeronautical Manufacturing Technology, 2017, (6): 76-83.
[3]刘世锋, 宋玺, 薛彤,等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94.
Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94.
[4]Williams J C, Boyer R R. Opportunities and issues in the application of titanium alloys for aerospace components[J]. Metals, 2020, 10(6): 705.
[5]王珏, 韩颖杰, 谢洪志, 等. TC4钛合金双曲度复杂航空零件热成形工艺研究[J]. 塑性工程学报, 2021, 28(2): 29-37.
Wang J, Hang Y J, Xie H Z. et, al. Research on hot forming process of TC4 titanium alloy hyperbolic complex aviation part[J]. Journal of Plasticity Engineering, 2021, 28(2): 29-37.
[6]胡云, 林彬. 钛合金曲面类零件的热冲压工艺[J]. 锻压技术, 2023, 48(3): 95-98.
Hu Y, Lin B. Hot stamping process of titanium alloy curved surface parts[J]. Forging & Stamping Technology, 2023, 48(3): 95-98.
[7]陈灿. TA32高温钛合金复杂飞机蒙皮零件热成形工艺研究[D]. 南京:南京航空航天大学, 2018.
Chen C. Research on Thermoforming Process of Complex Aircraft Skin Parts for TA32 Titanium Alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018.
[8]Maeno T, Tomobe M, Mori K, et al. Hot stamping of titanium alloy sheets using partial contact heating[J]. Procedia Manufacturing, 2018, 15:1149-1155.
[9]高铁军, 刘青, 蔡晋, 等. 复杂形状TA2钛合金半管件黏性介质压力成形[J]. 中国有色金属学报, 2016, 26(4): 790-796.
Gao T J, Liu Q, Cai J, et al. Viscous pressure forming of semi-pipe parts of complex shape TA2 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2016, 26 (4): 790-796.
[10]汪凯旋, 高铁军, 葛蒙召,等. 底部中空方盒形件粘性介质压力成形工艺研究[J]. 机械设计与制造, 2023,(4): 144-147.
Wang K X, Gao T J, Ge M Z, et al. Research on viscous pressure forming of square box-shaped parts with a hole at the bottom[J]. Machinery Design & Manufacture, 2023, (4): 144-147.
[11]张佳彬. 基于界面效应的铝合金拼焊覆层板胀形性能研究[D].沈阳:沈阳航空航天大学, 2022.
Zhang J B. Research on Bulging Performance of Aluminum Alloy Tailor-welded Overlapping Sheets Based on Interface Effect[D]. Shenyang: Shenyang Aerospace University, 2022.
[12]高铁军, 王硕, 王晓康, 等. 界面摩擦对5A02/SUS304覆层板胀形性能影响的理论及有限元分析[J]. 塑性工程学报, 2019, 26(4): 194-199.
Gao T J, Wang S, Wang X K, et al. Theoretical and finite element analysis of influence of interface friction on bulging performance of 5A02/SUS304 overlapping sheet[J]. Journal of Plasticity Engineering, 2019, 26(4): 194-199.
[13]冯苏乐. 5A06铝合金非对称件双向加压拉深成形研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
Feng S L. Drawing of 5A06 Aluminum Alloy Chamfered Cup with Double Side Pressure[D]. Harbin:Harbin Institute of Technology,2011.
[14]徐永超,韩思雨,刘胜京.液室压力加载路径对5A06铝合金锥形件充液拉深成形的影响[J].锻压技术, 2022, 47(12): 38-43.
Xu Y C, Han S Y, Liu S J. Influence of cavity pressure loading path on hydroforming for 5A06 aluminum alloy conical cups[J]. Forging & Stamping Technology, 2022, 47(12): 38-43.
[15]Gao T J, Zhang J B, Wang K X. Viscous backpressure forming and feasibility study of hemispherical aluminum alloy parts[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(7-8): 5069-5078.
|