网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
钛合金板材反向粘性介质压力胀形及性能研究
英文标题:Study on reverse viscous medium pressure bulging and performance for titanium alloy sheet
作者:杨朋飞1 王璋2 陈元琨1 高铁军1 
单位:1. 沈阳航空航天大学 2. 中国航发哈尔滨东安发动机有限公司 
关键词:钛合金 反向粘性介质压力胀形 胀形性能 椭圆度 成形极限 
分类号:TG302
出版年,卷(期):页码:2024,49(3):34-39
摘要:

针对钛合金板材室温下塑性变形能力差的问题,采用实验和有限元分析相结合的方法,进行了反向粘性介质压力胀形研究,借助粘性介质性能及反向压力改善板材的受力状态和变形规律,提高钛合金板材胀形性能及成形极限。首先,进行了钛合金板材半球形凸模反向粘性介质压力胀形过程分析,得到了不同反向粘性介质压力试件的等效应力及壁厚的分布规律;在此基础上,通过不同椭圆度凸模反向粘性介质压力胀形研究,分析了试件复杂程度与反向粘性介质压力胀形质量及性能的关系,并通过应变网格法构建了不同反向粘性介质压力条件下的成形极限图。研究结果可为钛合金板材反向粘性介质压力成形工艺参数的确定提供重要参考。

 

Aiming at the poor plastic deformation ability of titanium alloy sheet at room temperature, the reverse viscous medium pressure bulging was studied by combining experiment and finite element analysis, and with the help of viscous medium performance and reverse pressure, the stress state and deformation law of sheet were improved to improve the bulging performance and forming limit of titanium alloy sheet. In the research process, the reverse viscous medium pressure bulging process of titanium alloy sheet with hemispherical punch was analyzed, and the distribution laws of equivalent stress and wall thickness of different reverse viscous medium pressure specimens were obtained. On this basis, the relationship between the complexity of specimen and the quality and performance of reverse viscous medium pressure bulging was analyzed by the study of reverse viscous medium pressure bulging with different ellipticity punches, and the forming limit diagram under different reverse viscous medium pressure conditions was constructed by strain grid method. The research results provide an important reference for determining the process parameters of reverse viscous medium pressure forming of titanium alloy sheets.

基金项目:
国家自然科学基金资助项目(52075347);辽宁省高等学校基本科研面上项目(LJKZ0192)
作者简介:
作者简介:杨朋飞(1995-),男,硕士研究生,E-mail:1437937721@qq.com;通信作者:高铁军(1977-),男,博士,教授,E-mail:tiejun_gao@163.com
参考文献:

[1]李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(S1): 280-282.


Li Y, Zhao Y Q, Zeng W D. Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(S1): 280-282.

 

[2]刘志成, 张利军, 薛祥义. 关于先进战斗机结构制造用钛概述[J]. 航空制造技术, 2017, (6): 76-83.

 

Liu Z C, Zhang L J, Xue X Y. Overview about advanced fighter aircraft structure made with titanium[J]. Aeronautical Manufacturing Technology, 2017, (6): 76-83.

 

[3]刘世锋, 宋玺, 薛彤,等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94.

 

Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94.

 

[4]Williams J C, Boyer R R. Opportunities and issues in the application of titanium alloys for aerospace components[J]. Metals, 2020, 10(6): 705.

 

[5]王珏, 韩颖杰, 谢洪志, 等. TC4钛合金双曲度复杂航空零件热成形工艺研究[J]. 塑性工程学报, 2021, 28(2): 29-37.

 

Wang J, Hang Y J, Xie H Z. et, al. Research on hot forming process of TC4 titanium alloy hyperbolic complex aviation part[J]. Journal of Plasticity Engineering, 2021, 28(2): 29-37.

 

[6]胡云, 林彬. 钛合金曲面类零件的热冲压工艺[J]. 锻压技术, 2023, 48(3): 95-98.

 

Hu Y, Lin B. Hot stamping process of titanium alloy curved surface parts[J]. Forging & Stamping Technology, 2023, 48(3): 95-98.

 

[7]陈灿. TA32高温钛合金复杂飞机蒙皮零件热成形工艺研究[D]. 南京:南京航空航天大学, 2018.

 

Chen C. Research on Thermoforming Process of Complex Aircraft Skin Parts for TA32 Titanium Alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018.

 

[8]Maeno T, Tomobe M, Mori K, et al. Hot stamping of titanium alloy sheets using partial contact heating[J]. Procedia Manufacturing, 2018, 15:1149-1155.

 

[9]高铁军, 刘青, 蔡晋, 等. 复杂形状TA2钛合金半管件黏性介质压力成形[J]. 中国有色金属学报, 2016, 26(4): 790-796.

 

Gao T J, Liu Q, Cai J, et al. Viscous pressure forming of semi-pipe parts of complex shape TA2 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2016, 26 (4): 790-796.

 

[10]汪凯旋, 高铁军, 葛蒙召,等. 底部中空方盒形件粘性介质压力成形工艺研究[J]. 机械设计与制造, 2023,(4): 144-147.

 

Wang K X, Gao T J, Ge M Z, et al. Research on viscous pressure forming of square box-shaped parts with a hole at the bottom[J]. Machinery Design & Manufacture, 2023, (4): 144-147.

 

 

[11]张佳彬. 基于界面效应的铝合金拼焊覆层板胀形性能研究[D].沈阳:沈阳航空航天大学, 2022.

 

Zhang J B. Research on Bulging Performance of Aluminum Alloy Tailor-welded Overlapping Sheets Based on Interface Effect[D]. Shenyang: Shenyang Aerospace University, 2022.

 

[12]高铁军, 王硕, 王晓康, 等. 界面摩擦对5A02/SUS304覆层板胀形性能影响的理论及有限元分析[J]. 塑性工程学报, 2019, 26(4): 194-199.

 

Gao T J, Wang S, Wang X K, et al. Theoretical and finite element analysis of influence of interface friction on bulging performance of 5A02/SUS304 overlapping sheet[J]. Journal of Plasticity Engineering, 2019, 26(4): 194-199.

 

[13]冯苏乐. 5A06铝合金非对称件双向加压拉深成形研究[D]. 哈尔滨:哈尔滨工业大学, 2011.

 

Feng S L. Drawing of 5A06 Aluminum Alloy Chamfered Cup with Double Side Pressure[D]. Harbin:Harbin Institute of Technology,2011.

 

[14]徐永超,韩思雨,刘胜京.液室压力加载路径对5A06铝合金锥形件充液拉深成形的影响[J].锻压技术, 2022, 47(12): 38-43.

 

Xu Y C, Han S Y, Liu S J. Influence of cavity pressure loading path on hydroforming for 5A06 aluminum alloy conical cups[J]. Forging & Stamping Technology, 2022, 47(12): 38-43.

 

[15]Gao T J, Zhang J B, Wang K X. Viscous backpressure forming and feasibility study of hemispherical aluminum alloy parts[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(7-8): 5069-5078.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9