网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
包辛格效应对DP590钢零件回弹计算精度的影响
英文标题:Influence of Bauschinger effect on springback analysis accuracy for DP590 steel part
作者:郭岳明1 董智超2 闫巍2 王刚2 张健2 
单位:1.吉林大学 2.一汽模具制造有限公司 
关键词:包辛格效应 DP590高强钢 回弹 冲压 计算精度 
分类号:TG386
出版年,卷(期):页码:2024,49(3):40-46
摘要:

针对DP590高强钢零件在冷冲压过程中出现的有限元分析回弹结果与实际结果差异的问题,以某汽车中通道零件为研究对象,开发拉延、修边、整形模具,并通过开展材料力学性能试验,构建材料本构模型,利用有限元分析技术和光学检测技术开展研究。研究结果表明,DP590高强钢在循环加载过程中陆续表现出非线性弹性、瞬态软化与加工硬化停滞现象,即包辛格效应较为明显。此外,包辛格效应对塑性应变路径多变的DP590高强钢零件回弹影响明显,有限元模拟技术准确地预测了实际零件的回弹,为回弹修改方案的制定提供了模拟验证手段。

For the problem of springback difference between finite element analysis and actual results for DP590 high-strength steel parts in the cold stamping. A medium channel part of automotive was selected as the research object, and the drawing, trimming and flanging dies were developed. Meanwhile, the constitutive model of material was established by carrying out the mechanical property tests of material, and the research was carried out by using the finite element analysis technology and optical inspection technology. The research results show that DP590 high-strength steel gradually exhibits non-linear elasticity, transient softening and work hardening stagnation phenomenon during the cyclic loading process, that is, the Bauschinger effect is more obvious. Furthermore, Bauschinger effect has a significant impact on the springback of DP590 high-strength steel part with variable plastic strain paths, and the finite element simulation technology predicts the actual springback of part accurately, which provides a simulation verification method for the formulation of springback modification scheme.

基金项目:
国家重点研发计划资助项目(2020YFB2010300);吉林省科技重大专项项目(20220301023GX)
作者简介:
作者简介:郭岳明(2002-),男,本科生,E-mail:1076683215@qq.com;通信作者:闫巍(1982-),男,硕士,正高级工程师,E-mail:yanwei_td@faw.com.cn
参考文献:

[1]陈鹏,段磊,马舟,等.汽车左右侧边梁加强板冲压工艺优化及回弹控制研究[J]. 锻压技术,2023,48(12):72-80.


 

Chen P,Duan L,Ma Z,et al.Research on stamping process optimization and springback control for automobile left and right side beam reinforcement plates[J]. Forging & Stamping Technology,2023,48(12): 72-80.

 

[2]李小强,董红瑞,于长旺,等.不同屈服准则与硬化模型对DP780双相高强钢拉延弯曲回弹预测影响规律研究 [J]. 机械工程学报,2020,56(12):42-55.

 

Li X Q,Dong H R,Yu C W,et al. Influence of yield criteria and hardening model on draw-bending springback prediction of DP780[J]. Journal of Mechanical Engineering,2020,56(12):42-55.

 

[3]牛超,陈新平,陈军. 不同材料强化模型对QP钢回弹预测精度的理论及应用研究 [J]. 塑性工程学报,2019,26(1): 221-226.

 

Niu C,Chen X P,Chen J. Theory and application study on springback prediction accuracy for QP steel with different material hardening models [J]. Journal of Plasticity Engineeing, 2019,26(1): 221-226.

 

[4]宋炳毅,孟宝,万敏. 金属薄板循环塑性强化模型及实验研究进展 [J]. 精密成形工程,2019,11(3): 28-41.

 

Song B Y,Meng B,Wan M. Research progress of cyclic plastic hardening model and experiment for metal sheets [J]. Journal of Netshape Forming Engineering,2019,11(3): 28-41.

 

[5]庄京彪. 车身成形中的包辛格效应及其对回弹的影响 [D]. 长沙:湖南大学,2013. 

 

Zhuang J B. The Bauschinger Effect in Auto-body Forming and Its Influence on Springback [D]. Changsha:Hunan University,2013.

 

[6]张健,闫巍,王刚,等. 铝合金车门外板冷冲压成形工艺及数值模拟 [J]. 塑性工程学报,2022,29(5): 45-52.

 

Zhang J,Yan W,Wang G,et al. Cold stamping process and numerical simulation of aluminum alloy auto outer door panel [J]. Journal of Plasticity Engineering,2022,29 (5): 45-52.

 

[7]孙占坤. 汽车用高强板成形性能的模拟研究 [D]. 呼和浩特:内蒙古科技大学,2015. 

 

Sun Z K. Simulation Study of the Formability of a High Strength Steel for Automobile [D].Hohhot:Inner Mongolia University of Science & Technology,2015.

 

[8]赵清江,郭怡晖,梁宾,等. 22MnB5 高强度钢板材的断裂失效准则研究 [J]. 塑性工程学报,2020,27(4): 132-137.

 

Zhao Q J,Guo Y H,Liang B,et al. Research on fracture criterion of 22MnB5 high-strength steel plate [J]. Journal of Plasticity Engineering,2020,27(4): 132-137.

 

[9]史刚,王武荣,羊军,等. 1000 MPa级双相钢薄板极限成形性能 [J].上海交通大学学报,2011,45(11): 1653-1656.

 

Shi G,Wang W R,Yang J,et al.Study on limit formability of 1000 MPa dual phase steel [J]. Journal of Shanghai Jiaotong University,2011,45(11): 1653-1656.

 

[10]赵辉,彭艳,石宝东. 金属材料各向异性本构模型研究进展 [J]. 塑性工程学报,2022,29(10): 32-42.

 

Zhao H,Peng Y,Shi B D. Research progress on anisotropic constitutive model of metal materials [J]. Journal of Plasticity Engineering,2022,29(10): 32-42.

 

[11]Yoshida F,Uemori T. A model of large-strain cyclic plasticity describing the bauschinger effect and workhardening stagnation [J]. International Journal of Plasticity,2002,18(5-6): 661-686.

 

[12]Wagoner R H,Lim H,Lee M G. Advanced issues in springback [J]. International Journal of Plasticity,2013,45: 3-20.

 

[13]Taherizadeh A,Green D E,Ghaei A,et al. A non-associated constitutive model with mixed iso-kinematic hardening for finite element simulation of sheet metal forming [J]. International Journal of Plasticity,2010,26: 288-309.


 

[14]苟建军,王森,王健,等. 基于BP神经网络的金属薄板包辛格效应预测 [J]. 塑性工程学报,2022,29(8):152-157.

 

Gou J J,Wang S,Wang J,et al. Prediction of Bauschinger effect for metal thin sheet based on BP neural network [J]. Journal of Plasticity Engineering,2022,29(8):152-157.

 

[15]罗云,蒋文春,杨滨,等. 材料强化模型对回弹计算模拟精度的影响 [J]. 机械强度,2015,37(3):551-555.

 

Luo Y,Jiang W C,Yang B,et al. Effect of material work hardening model on the simulation precision for springback [J]. Journal of Mechanical Strength,2015,37(3):551-555.

 

[16]谌勇志.大应变本构模型及其在扭曲回弹中的应用 [D]. 长沙:湖南大学,2010. 

 

Chen Y Z. A Constitutive Model of Large Strain and Its Application to Twist Springback Simulation [D]. Changsha:Hunan University,2010.

 

[17]陈新力, 张军, 詹华.超高强度钢DP980包辛格效应测量与参数识别 [J]. 塑性工程学报,2022,29(12): 183-187.

 

Chen X L,Zhang J,Zhan H.Bauschinger effect measurement and parameter identification of ultra-high strength steel DP980 [J]. Journal of Plasticity Engineering,2022,29(12): 183-187.

 

[18]GB/T 228.1—2021,金属材料拉伸试验第1部分: 室温试验方法[S].

 

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

 

[19]GB/T 24171.2—2009,金属材料薄板和薄带成形极限曲线的测定第2部分: 实验室成形极限曲线的测定[S].

 

GB/T 24171.2—2009,Metallic materials—Sheet and strip—Determinations of forming limit curves—Part 2: Determinations of forming limit curves in laboratory[S].

 

[20]GB/T 26077—2021,金属材料疲劳试验轴向应变控制方法[S].

 

GB/T 26077—2021,Metallic materials—Fatigue testing—Axial-strain-controlled method[S].

 

[21]GB/T 3075—2021,金属材料疲劳试验轴向力控制方法[S].

 

GB/T 3075—2021,Metallic materials—Fatigue testing——Axial force-controlled method[S].

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9