[1]陈鹏,段磊,马舟,等.汽车左右侧边梁加强板冲压工艺优化及回弹控制研究[J]. 锻压技术,2023,48(12):72-80.
Chen P,Duan L,Ma Z,et al.Research on stamping process optimization and springback control for automobile left and right side beam reinforcement plates[J]. Forging & Stamping Technology,2023,48(12): 72-80.
[2]李小强,董红瑞,于长旺,等.不同屈服准则与硬化模型对DP780双相高强钢拉延弯曲回弹预测影响规律研究 [J]. 机械工程学报,2020,56(12):42-55.
Li X Q,Dong H R,Yu C W,et al. Influence of yield criteria and hardening model on draw-bending springback prediction of DP780[J]. Journal of Mechanical Engineering,2020,56(12):42-55.
[3]牛超,陈新平,陈军. 不同材料强化模型对QP钢回弹预测精度的理论及应用研究 [J]. 塑性工程学报,2019,26(1): 221-226.
Niu C,Chen X P,Chen J. Theory and application study on springback prediction accuracy for QP steel with different material hardening models [J]. Journal of Plasticity Engineeing, 2019,26(1): 221-226.
[4]宋炳毅,孟宝,万敏. 金属薄板循环塑性强化模型及实验研究进展 [J]. 精密成形工程,2019,11(3): 28-41.
Song B Y,Meng B,Wan M. Research progress of cyclic plastic hardening model and experiment for metal sheets [J]. Journal of Netshape Forming Engineering,2019,11(3): 28-41.
[5]庄京彪. 车身成形中的包辛格效应及其对回弹的影响 [D]. 长沙:湖南大学,2013.
Zhuang J B. The Bauschinger Effect in Auto-body Forming and Its Influence on Springback [D]. Changsha:Hunan University,2013.
[6]张健,闫巍,王刚,等. 铝合金车门外板冷冲压成形工艺及数值模拟 [J]. 塑性工程学报,2022,29(5): 45-52.
Zhang J,Yan W,Wang G,et al. Cold stamping process and numerical simulation of aluminum alloy auto outer door panel [J]. Journal of Plasticity Engineering,2022,29 (5): 45-52.
[7]孙占坤. 汽车用高强板成形性能的模拟研究 [D]. 呼和浩特:内蒙古科技大学,2015.
Sun Z K. Simulation Study of the Formability of a High Strength Steel for Automobile [D].Hohhot:Inner Mongolia University of Science & Technology,2015.
[8]赵清江,郭怡晖,梁宾,等. 22MnB5 高强度钢板材的断裂失效准则研究 [J]. 塑性工程学报,2020,27(4): 132-137.
Zhao Q J,Guo Y H,Liang B,et al. Research on fracture criterion of 22MnB5 high-strength steel plate [J]. Journal of Plasticity Engineering,2020,27(4): 132-137.
[9]史刚,王武荣,羊军,等. 1000 MPa级双相钢薄板极限成形性能 [J].上海交通大学学报,2011,45(11): 1653-1656.
Shi G,Wang W R,Yang J,et al.Study on limit formability of 1000 MPa dual phase steel [J]. Journal of Shanghai Jiaotong University,2011,45(11): 1653-1656.
[10]赵辉,彭艳,石宝东. 金属材料各向异性本构模型研究进展 [J]. 塑性工程学报,2022,29(10): 32-42.
Zhao H,Peng Y,Shi B D. Research progress on anisotropic constitutive model of metal materials [J]. Journal of Plasticity Engineering,2022,29(10): 32-42.
[11]Yoshida F,Uemori T. A model of large-strain cyclic plasticity describing the bauschinger effect and workhardening stagnation [J]. International Journal of Plasticity,2002,18(5-6): 661-686.
[12]Wagoner R H,Lim H,Lee M G. Advanced issues in springback [J]. International Journal of Plasticity,2013,45: 3-20.
[13]Taherizadeh A,Green D E,Ghaei A,et al. A non-associated constitutive model with mixed iso-kinematic hardening for finite element simulation of sheet metal forming [J]. International Journal of Plasticity,2010,26: 288-309.
[14]苟建军,王森,王健,等. 基于BP神经网络的金属薄板包辛格效应预测 [J]. 塑性工程学报,2022,29(8):152-157. Gou J J,Wang S,Wang J,et al. Prediction of Bauschinger effect for metal thin sheet based on BP neural network [J]. Journal of Plasticity Engineering,2022,29(8):152-157. [15]罗云,蒋文春,杨滨,等. 材料强化模型对回弹计算模拟精度的影响 [J]. 机械强度,2015,37(3):551-555. Luo Y,Jiang W C,Yang B,et al. Effect of material work hardening model on the simulation precision for springback [J]. Journal of Mechanical Strength,2015,37(3):551-555. [16]谌勇志.大应变本构模型及其在扭曲回弹中的应用 [D]. 长沙:湖南大学,2010. Chen Y Z. A Constitutive Model of Large Strain and Its Application to Twist Springback Simulation [D]. Changsha:Hunan University,2010. [17]陈新力, 张军, 詹华.超高强度钢DP980包辛格效应测量与参数识别 [J]. 塑性工程学报,2022,29(12): 183-187. Chen X L,Zhang J,Zhan H.Bauschinger effect measurement and parameter identification of ultra-high strength steel DP980 [J]. Journal of Plasticity Engineering,2022,29(12): 183-187. [18]GB/T 228.1—2021,金属材料拉伸试验第1部分: 室温试验方法[S]. GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S]. [19]GB/T 24171.2—2009,金属材料薄板和薄带成形极限曲线的测定第2部分: 实验室成形极限曲线的测定[S]. GB/T 24171.2—2009,Metallic materials—Sheet and strip—Determinations of forming limit curves—Part 2: Determinations of forming limit curves in laboratory[S]. [20]GB/T 26077—2021,金属材料疲劳试验轴向应变控制方法[S]. GB/T 26077—2021,Metallic materials—Fatigue testing—Axial-strain-controlled method[S]. [21]GB/T 3075—2021,金属材料疲劳试验轴向力控制方法[S]. GB/T 3075—2021,Metallic materials—Fatigue testing——Axial force-controlled method[S].
|