[1]康永林. “十三五”中国轧钢技术进步及展望[J]. 钢铁,2021,56(10):1-15.
Kang Y L. China steel rolling technology progress in the 13th five-year plan and prospection[J]. Iron & Steel, 2021, 56 (10): 1-15.
[2]曹建国,宋纯宁,王雷雷,等. 新一代高技术轧机电工钢矩形断面板形控制创新研究[A]. 中国金属学会. 第十三届中国钢铁年会论文集——4.轧制与热处理钢铁[C]. 重庆:冶金工业出版社,2022.
Cao J G, Song C N, Wang L L, et al. Innovation research on rectangular section for profile and flatness control of electrical steel in new-generation high-tech rolling mills[A]. The Chinese Society for Metals. Proceedings of the 13th China Steel Annual Conference-4. Rolling and Heat Treatment of Steel[C]. Chongqing: Metallurgical Industry Press, 2022.
[3]曹建国,江军,邱澜,等. 新一代高技术宽带钢冷轧机全机组一体化板形控制[J]. 中南大学学报:自然科学版,2019,50 (7):1584-1591.
Cao J G, Jiang J, Qiu L, et al. High precision integrated profile and flatness control for new-generation high-tech wide strip cold rolling mills[J]. Journal of Central South University:Science and Technology, 2019, 50 (7): 1584-1591.
[4]龚亮,张钢,董绍友,等. 冷轧机工作辊操作侧支承轴承系统力学特性分析[J]. 工业控制计算机,2020,33 (11):74-77.
Gong L, Zhang G, Dong S Y, et al. Analysis of mechanical characteristics of supporting bearing system on operating side of work roll of cold mill[J]. Industrial Control Computer, 2020, 33 (11): 74-77.
[5]张大志,李谋渭,孙一康,等. 四机架冷连轧机轧制力模型的研究与应用[J]. 轧钢,2000,17 (3):15-17.
Zhang D Z, Li M W, Sun Y K, et al. The research and application of the rolling force model for 4-stand tandem cold strip mill[J]. Steel Rolling, 2000, 17 (3): 15-17.
[6]宋纯宁,曹建国,王雷雷,等. 六辊冷连轧机电工钢矩形断面控制弯辊力模型[J]. 哈尔滨工业大学学报,2022,54 (7):143-150.
Song C N, Cao J G, Wang L L, et al. Model of rectangular section control roll bending force for electrical steel in six-high tandem cold mill[J]. Journal of Harbin Institute of Technology, 2022, 54 (7): 143-150.
[7]邢德茂,姚利辉,李学通. 2030 mm冷连轧机组板形预报及影响因素研究[J]. 塑性工程学报,2021,28 (3):210-216.
Xing D M, Yao L H, Li X T. Study on prediction and influencing factors of flatness of 2030 mm tandem cold rolling mill[J]. Journal of Plasticity Engineering, 2021, 28 (3): 210-216.
[8]刘华强,唐荻,杨荃,等. 模糊小脑模型神经网络在多辊冷连轧机轧制力预报模型中的应用[J]. 北京科技大学学报,2006,28 (10):969-972.
Liu H Q, Tang D, Yang Q, et al. Rolling force prediction model of a multi-roll cold tandem mill by fuzzy cerebellum model articulation controller[J]. Journal of University of Science and Technology Beijing, 2006, 28 (10): 969-972.
[9]严国平. 六辊轧机小辊径工作辊变形受力分析[J]. 冶金设备,2015,(6):19-21.
Yan G P. Stress analysis on the deformation of the small working rolls of six roller mill [J]. Metallurgical Equipment, 2015, (6): 19-21.
[10]白振华,刘亚星,钱承,等. 小型四辊轧机工作辊水平位移对板形的影响[J]. 中国机械工程,2017,28 (9):1085-1091.
Bai Z H, Liu Y X, Qian C, et al. Influences of work roll horizontal displacements on shape in small four high rolling mills [J]. China Mechanical Engineering, 2017, 28 (9): 1085-1091.
[11]郭利华,张振营,严裕宁. 基于有限元的六辊轧机机架变形分析[J]. 轧钢,2012,29 (2):12-14,20.
Guo L H, Zhang Z Y, Yan Y N. Finite element analysis of the stand deformation of a 6-high mill[J]. Steel Rolling, 2012, 29 (2): 12-24,20.
[12]Bai Z H, Xing Y, Liu S Y, et al. Calculating the flattening coefficient between roll gaps at the horizontal deflection of work rolls[J]. Ironmaking & Steelmaking, 2019, 46 (2):184-192.
[13]周富强,曹建国,张杰,等. 冷连轧机轧制力的影响因素[J]. 机械工程学报,2006,43 (10):94-97.
Zhou F Q, Cao J G, Zhang J, et al. Influence factors of rolling force in tandem cold rolling[J]. Chinese Journal of Mechanical Engineering, 2006, 43 (10): 94-97.
[14]周富强,曹建国,张杰,等. 基于神经网络的冷连轧机轧制力预报模型[J]. 中南大学学报:自然科学版,2006,37 (6):1155-1160.
Zhou F Q, Cao J G, Zhang J, et al. Prediction model of rolling force for tandem cold rolling mill based on neural networks and mathematical models[J]. Journal of Central South University:Science and Technology, 2006, 37 (6): 1155-1160.
[15]孙登月,杜凤山,朱泉封,等. 五机架冷连轧机轧制力人工神经网络预报[J]. 钢铁,2002,37 (2):28-30,34.
Sun D Y, Du F S, Zhu Q F, et al. Prediction on five-stand cold rolling mill of rolling force by neural network[J]. Iron & Steel, 2002, 37 (2): 28-30,34.
[16]Wang Z H, Gong D Y, Li X, et al. Prediction of bending force in the hot strip rolling process using artificial neural network and genetic algorithm (ANN-GA)[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93 (4): 3325-3338.
[17]Deng J F, Sun J, Peng W, et al. Application of neural networks for predicting hot-rolled strip crown[J]. Applied Soft Computing, 2019, 78: 119-131.
[18]曹建国,江军,赵秋芳,等. 基于数据挖掘的宽厚板板凸度控制[J]. 中南大学学报:自然科学版,2019,50 (11):2743-2752.
Cao J G, Jiang J, Zhao Q F, et al. Wide and heavy plate crown control based on data mining[J]. Journal of Central South University:Science and Technology, 2019, 50 (11): 2743-2752.
[19]Liu J Y, Liu X X, Ba T L. Rolling force prediction of hot rolling based on GA-MELM[J]. Complexity, 2019, (4): 1-11.
[20]张俊明,刘军,康永林,等. 应用RBF神经网络预测冷连轧机轧制力[J]. 钢铁,2007,42 (8):46-48.
Zhang J M, Liu J, Kang Y L, et al. Application of RBF neural networks to prediction of rolling force of tandem cold mill[J]. Iron & Steel, 2007, 42 (8): 46-48.
[21]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proceedings of the 1995 ICNN-International Conference on Neural Networks[C]. Perth: IEEE Press, 1995.
[22]Shi Y, Eberhart R. A modified particle optimizer[A]. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation[C]. Anchorage, 1998.
[23]Shi Y. Particle swarm optimization[J]. IEEE Connections, 2004, 2(1): 8-13.
[24]杨静,任彦,高晓文,等. 基于GA-PELM的板材热连轧轧制力预测[J]. 锻压技术,2022,47 (1): 43-48.
Yang J, Ren Y, Gao X W, et al. Rolling force prediction of hot strip rolling based on GA-PELM[J]. Forging & Stamping Technology, 2022, 47 (1): 43-48.
[25]张浩,王国文,曾凡宜,等. 基于BP神经网络的6082铝合金固溶时效处理后的晶粒尺寸预测[J]. 锻压技术,2023,48 (3): 227-235.
Zhang H, Wang G W, Zeng F Y, et al. Grain size prediction of 6082 aluminum alloy after solution and aging treatment based on BP neural network[J]. Forging & Stamping Technology, 2023, 48 (3): 227-235.
[26]张海霞,李灿. 基于比例损失去噪自编码器的冷连轧轧制力预测分析[J]. 锻压技术,2022,47 (4): 190-194.
Zhang H X, Li C. Rolling force prediction analysis of tandem cold rolling based on proportional loss denoising autoencoder[J]. Forging & Stamping Technology, 2022, 47 (4): 190-194.
[27]王辉,廖旭洲,蔡继文,等. AZ31B镁合金电流辅助旋压回弹角预测及工艺参数优化[J]. 锻压技术,2022,47 (8): 29-34.
Wang H, Liao X Z, Cai J W, et al. Prediction on springback angle and process parameter optimization in electro-assisted spinning for AZ31B magnesium alloy[J]. Forging & Stamping Technology, 2022, 47 (8): 29-34.
[28]Yan Z W, Bu H N, Hu C Z, et al. Rolling force prediction during FGC process of tandem cold rolling based on IQGA-WNN ensemble learning[J]. The Internation Journal of Advanced Manufacturing Technology, 2023, 125 (5-6): 2869-2884.
|