网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于改进BOA-ELM的热轧带钢宽度预测
英文标题:Prediction on hot rolled strip width based on improved BOA-ELM
作者:陈啸天 张帅 杨培宏 张勇 
单位:内蒙古科技大学 
关键词:粗轧宽度预测 热轧带钢 蝴蝶优化算法 Fuch混沌映射 非线性惯性权重 折射反向学习 
分类号:TG335.56;TP183
出版年,卷(期):页码:2024,49(3):101-106
摘要:

针对传统粗轧宽度预测模型参数强耦合、非线性等特点,从数据驱动角度出发,提出一种基于改进蝴蝶算法优化极限学习机(IBOA-ELM)的粗轧宽度预测模型。首先,利用蝴蝶优化算法(BOA)对极限学习机(ELM)的随机权重和偏置进行参数寻优,以提高ELM模型的预测精度。然后,针对蝴蝶优化算法易陷入局部最优及收敛性差等问题,引入Fuch混沌映射、非线性惯性权重和折射反向学习等策略改进蝴蝶优化算法,进一步提高宽度预测模型的精度。最后,通过某钢厂热轧生产现场数据对该模型进行仿真测试。结果表明:基于数据驱动的IBOA-ELM模型在预测精度方面具有明显优势,预测粗轧宽度误差在±8 mm以内的命中率为93%,明显优于对照模型,可用于热轧带钢粗轧宽度预测且具有较强的适用性。

For the characteristics of strong coupling and non-linearity of parameters in traditional rough rolling width prediction model, a new rough rolling width prediction model based on improved butterfly algorithm optimized extreme learning machine (IBOA-ELM) was proposed from the data-driven perspective. Firstly, the random weight and bias of the extreme learning machine (ELM) were optimized by butterfly optimization algorithm (BOA) to improve the prediction accuracy of ELM model. Then, for the problems that the butterfly optimization algorithm was easy to fall into local optimum and the convergence was poor, the butterfly  optimization algorithm was improved by introducing  the strategies of Fuch chaotic mapping, non-linearity inertia weights, refraction reverse learning and so on to further improve the accuracy of the width prediction model. Finally, the model was simulated and tested by the hot rolling production site data of a steel mill. The results show that the data-driven IBOA-ELM model has obvious advantages in prediction accuracy, and the hit rate of predicting the rough rolling width within ±8 mm is 93%, which is significantly better than the comparison models, and can be used for predicting the rough rolling width of hot rolled strips with strong applicability.

基金项目:
国家自然科学基金资助项目(62263026)
作者简介:
作者简介:陈啸天(1999-),男,硕士研究生,E-mail:1571059802@qq.com;通信作者:张帅(1986-),男,硕士,工程师,E-mail:364776437@qq.com
参考文献:

[1]李兴田.提高热轧带钢宽度控制精度的综合措施[J].轧钢,2004,21(1):49-51.


 

Li X T. Complex measures to improving the width control precision of hot rolled strip[J]. Steel Rolling,2004,21(1):49-51.

 

[2]费庆,战守义,胡浩平,等.基于神经网络的热轧带钢宽度预报与设定[J].北京理工大学学报,2004,24(12):1079-1083.

 

Fei Q,Zhan S Y,Hu H P,et al. Hot strip width prediction and setup with neural networks[J]. Journal of Beijing Institute of Technology, 2004,24(12):1079-1083.

 

[3]Deng J F,Sun J,Peng W,et al.Application of neural networks for predicting hot-rolled strip crown[J].Applied Soft Computing,2019,78:119-131.

 

[4]杨金光,孙丽荣,刘华强,等.基于PSO和DE优化算法的热轧工作辊热辊形的研究 [J].塑性工程学报,2018,25(3):289-296.

 

Yang J G,Sun L R,Liu H Q,et al. Study on thermal contour of work roll in hot rolling based on PSO and DE optimization algorithm[J]. Journal of Plasticity Engineering, 2018,25(3):289-296.


 

[5]梅文娟,高媛,杜立,等.基于在线相关熵极限学习机的器件退化趋势实时流预测方法[J].仪器仪表学报,2019,40(11):212-224.

 

Mei W J,Gao Y,Du L,et al. Online sequential regularized correntropy criterion extreme learning machine on spark streaming signal prediction for electronic device degradation[J]. Chinese Journal of Scientific Instrument, 2019,40(11):212-224.

 

[6]Arora S,Singh S.Butterfly optimization algorithm:A novel approach for global optimization[J].Soft Computing,2019,23(3):715-734.

 

[7]王永贵,李鑫,关连正.求解高维优化问题的改进鲸鱼优化算法[J].计算机科学与探索,2022,16(12):2890-2902.

 

Wang Y G,Li X,Guan L Z. Improved whale optimization algorithm for solving high-dimensional optimization problems[J]. Journal of Frontiers of Computer Science and Technology, 2022,16(12):2890-2902.

 

[8]段玉先,刘昌云.基于Sobol序列和纵横交叉策略的麻雀搜索算法[J].计算机应用,2022,42(1):36-43.

 

Duan Y X,Liu C Y. Sparrow search algorithm based on Sobol sequence and crisscross strategy[J]. Journal of Computer Applications, 2022,42(1):36-43.

 

[9]王光,金嘉毅.融合折射原理反向学习的飞蛾扑火算法[J].计算机工程与应用,2019,55(11):46-51,59.

 

Wang G,Jin J Y. Moth-flame optimization algorithm fused on refraction principle and opposite-based learning[J]. Computer Engineering and Applications, 2019,55(11):46-51,59.

 

[10]赵沁峰,蔡艳平,王新军.基于WOA-ELM的锂离子电池剩余寿命间接预测[J].中国测试,2021,47(9):138-145.

 

Zhao Q F,Cai Y P,Wang X J. WOA-ELM based indirect prediction of remaining useful life of lithium-ion battery[J].China Measurement & Test, 2021,47(9):138-145.

 

[11]田宏伟,李志鹏,王煜伟,等.CEEMDAN-WOA-ELM模型风机振动趋势预测[J].中国测试,2020,46(7):146-152.

 

Tian H W,Li Z P,Wang Y W,et al. Fan vibration trend prediction based on CEEMDAN-WOA-ELM model[J].China Measurement & Test, 2020,46(7):146-152.

 

[12]Mirjalili S,Mirjalili S M,Lewis A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61.

 

[13]Mirjalili S,Lewis A. The whale optimization algorithm[J].Advances in Engineering Software,2016,95: 51-67.

 

[14]张帅,王俊杰,李爱莲,等.基于改进GWO-ELM的热轧带钢卷取温度预测[J].电子测量技术,2021,44(22):50-55.

 

Zhang S, Wang J J, Li A L, et al. Improved GWO-ELM based hot rolled strip coiling temperature prediction[J]. Electronic Measurement Technology, 2021,44(22):50-55.

 

[15]李秉晨,于惠钧,丁华轩,等.基于CEEMD和LSTM-ARIMA的短期风速预测[J].中国测试,2022,48(2):163-168.

 

Li B C,Yu H J,Ding H X,et al. Short-term wind speed prediction based on CEEMD and LSTM-ARIMA[J].China Measurement & Test, 2022,48(2):163-168.


 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9