网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
弹壳打凹-平底成形微折叠缺陷分析及改进措施
英文标题:Micro-folding defect analysis and improvement measures on indenting-heading for cartridge case
作者:刘新 郭睦基 刘东 陶志勇 李雄 张高娟 
单位:重庆长江电工工业集团有限公司 
关键词:弹壳 打凹成形 平底成形 微折叠 金属流动 模具 
分类号:TG376
出版年,卷(期):页码:2024,49(3):152-160
摘要:

以某型号弹壳为研究对象,针对初始设计方案中弹壳底部成形后底火室侧壁微折叠的问题,通过微观组织观察和数值模拟确定微折叠产生于打凹成形,而导致微折叠产生的原因为:打凹成形过程中,隔板处金属的径向和轴向流动明显快于内侧壁,导致隔板与内壁连接处圆角的曲率半径持续变小,直至出现微折叠缺陷。同时,该微折叠缺陷在平底成形时保留并随着侧壁金属的轴向流动向下移动,与实际观测到的微折叠缺陷位置相吻合。为提高弹壳成形质量和避免该缺陷问题,提出一种修改打凹成形模具尺寸以改善打凹成形金属流动的改进方案,数值模拟和工艺试验结果均表明,采用改进方案后,打凹壳、平底壳均无微折叠缺陷,其他尺寸达到设计要求,改进工艺方案能够满足实际生产需求,提高了弹壳底部成形质量。

 

For a certain cartridge case, aiming at the problem of micro-folding in the side wall of bottom fire chamber after the bottom forming of cartridge case in the initial design scheme, the micro-folding occurred during the indenting was determined by microstructure observation and numerical simulation, and the causes of micro-folding were clarified. During the indenting process, the radial and axial flow of metal at the partition was significantly faster than that in the inner wall, resulting in a continuous reduction of curvature radius for the fillet at the connection zone between partition and inner wall, until there was a micro-folding defect. At the same time, the micro-folding defect retained and moved down a short distance with the axial flow of metal in the side wall during the heading process, which was consistent with the actual observed position of micro-folding defect. In order to improve the forming quality of cartridge case and avoid the defects, an improved scheme of modifying the dimension of indenting die to improve the metal flow during the indenting process was proposed. The numerical simulation and process test results show that by the improved scheme, there is no micro-folding defect in the indenting and heading cases, and other dimensions meet the design requirements. Thus, the improved scheme can meet the actual production requirements and improve the forming quality of the bottom for the cartridge case.

基金项目:
作者简介:
作者简介:刘新(1995-),女,硕士,工程师,E-mail:1324703458@qq.com
参考文献:

[1]冉松, 涂集林, 黎梅, 等. 智能制造在枪弹制造行业内的应用[J]. 兵工自动化, 2020, 39(11): 24-26,35.


 

Ran S, Tu J L, Li M, et al. Application of intelligent manufacturing system in ammunition industry [J]. Ordnance Industry Automation, 2020, 39(11): 24-26,35.

 

[2]涂集林, 李登虎, 张亚军, 等. 枪弹大批量定制发展策略研究[J]. 机械, 2021, 48(7): 44-51.

 

Tu J L, Li D H, Zhang Y J, et al. Development strategy of mass customization of ammunition [J]. Machinery, 2021, 48(7): 44-51.

 

[3]李晓光, 魏志芳, 高建中, 等. 枪弹弹壳挤盂组合模新型设计与研究[J]. 兵工自动化, 2016, 35(2): 82-85.

 

Li X G, Wei Z F, Gao J Z, et al. New design and research of bullet casting extrusion combined die [J]. Ordnance Industry Automation, 2016, 35(2):82-85.

 

[4]胡冶昌, 魏志芳, 李晓光, 等. 基于NX高级仿真的弹壳冲盂工序数字化模型研究[J]. 塑性工程学报, 2017, 24(2): 122-127.

 

Hu Y C, Wei Z F, Li X G, et al. Digital model study on the cartridge case extrusion forming based on NX advanced simulation [J]. Journal of Plasticity Engineering, 2017, 24(2):122-127.

 

[5]廖仕军, 吕刚, 薛松, 等. 弹壳底部平底成形工艺优化[J]. 兵器装备工程学报, 2020, 41(11): 182-185,206.

 

Liao S J, Lyu G, Xue S, et al. Study on flattening shaping process-optimized for campaign bullet [J]. Journal of Ordnance Equipment Engineering,2020, 41(11): 182-185,206.

 

[6]刘新, 郭睦基, 李登虎, 等. 弹壳拉深成形工艺分析及模具设计[J]. 锻压技术, 2022, 47(12):81-86.

 

Liu X, Guo M J, Li D H, et al. Process analysis and die design on cartrideg deep drawing [J]. Forging & Stamping Technology, 2022, 47(12):81-86.

 

[7]王玉松. 7050铝合金弹壳成形工艺优化及热处理工艺的研究[D]. 重庆:重庆大学, 2015.

 

Wang Y S. Research on the Heat Treatment Process and Optimization of Forming Process of 7050 Aluminum Alloy Cartridge [D]. Chongqing:Chongqing University, 2015.

 

[8]王兴雷, 冯再新, 姚宇康, 等. 某H70合金弹壳体收口成形工艺数值模拟研究[J]. 特种铸造及有色合金, 2023, 43(5): 595-598.

 

Wang X L, Feng Z X, Yao Y K, et al. Numerical simulation of necking process of a H70 alloy shell body [J]. Special Casting & Nonferrous Alloys, 2023, 43(5): 595-598.

 

[9]邹宇, 王名川, 陈才, 等. 基于有限元方法的弹壳拉深成形工艺结构参数研究[J]. 锻压技术, 2022, 47(11): 123-129.

 

Zou Y, Wang M C, Chen C, et al. Research on structural parameters of deep drawing process for cartridge case based on FEM [J]. Forging & Stamping Technology, 2022, 47(11): 123-129.

 

[10]胡建军, 李小平. DEFORM-3D塑性成形CAE应用教程[M]. 北京:北京大学出版社, 2011.

 

Hu J J,Li X P. Application Tutorial of CAE in Plastic Forming by DEFROM-3D [M]. Beijing: Peking University Press, 2011.

 

[11]胡开元, 王雷刚. 基于响应面法与灰狼优化算法的壳体拉深成形模具优化设计[J]. 锻压技术, 2022, 47(6): 244-250.

 

Hu K Y, Wang L G. Optimization design on shell deep drawing die based on response surface methodology and grey wolf optimization algorithm [J]. Forging & Stamping Technology, 2022, 47(6): 244-250.

 

[12]宋应德. 载重汽车行星齿轮一次冷挤压成形方法研究[D]. 重庆:重庆理工大学, 2023.

 

Song Y D. Research on One-step Cold Extrusion Forming Method of Truck Planetary Gear [D]. Chongqing:Chongqing University of Technology, 2023.

 

[13]梁强. 活塞销冷镦挤成形微折叠缺陷分析及改进措施[J]. 塑性工程学报, 2018, 25(6): 99-104.

 

Liang Q. Micro-folding defect analysis and improvement of cold upsetting-extruding process for piston-pin [J]. Journal of Plasticity Engineering, 2018, 25(6): 99-104.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9