[1]中国机械工程学会铸造分会.铸造手册第3卷:铸造非铁合金[M]. 2版.北京:机械工业出版社,2011.
Casting Branch of Chinese Mechanical Engineering Society. Casting Manual Volume 3: Casting Non-ferrous Alloys [M]. 2nd Edition. Beijing: China Machine Press,2011.
[2]张树才. 超级奥氏体不锈钢S32654的制备及组织与性能研究[D].沈阳:东北大学, 2019.
Zhang S C. Manufacture,Microstructure and Properties of Super Austenitic Stainless Steel S32654[D]. Shenyang:Northeastern University,2019.
[3]周奠华,王建平,陈国胜,等. 一种高温合金的模缎方法[P].中国:CN200710042561.8,2008-12-31.
Zhou D H, Wang J P, Chen G S,et al.Die forging method of high-temperature alloy[P].China:CN200710042561.8,2008-12-31.
[4]冯文. 304不锈钢晶界结构演化与晶粒尺寸和变形条件的相关性研究[D].南京:南京理工大学, 2019.
Feng W. Research on Dependence of the Evolution of Grain Boundary Structure on Grain Size and Deformation Conditions in 304 Austenitic Stainless Steel[D]. Nanjing:Nanjing University of Science & Technology,2019.
[5]张鹏,王智勇,尚峰,等.固溶处理对冷等静压成形双相不锈钢显微组织和耐腐蚀性能的影响[J].粉末冶金工业,2021,(1):64-68.
Zhang P, Wang Z Y, Shang F, et al. Effect of solution treatment on microstructure and corrosion resistance of duplex stainless steel fabricated by cold isostatic pressing [J]. Powder Metallurgy Industry,2021,(1):64-68.
[6]黄天林, 陈宏生, 刘伟,等. 冷轧多晶纯镍中晶界对显微硬度和微观组织结构的影响[J].稀有金属, 2007, 31(5):590-595.
Huang T L, Chen H S, Liu W, et al. Effect of grain boundaries on deformation structure and microhardness in cold-rolled polycrystalline nickel[J]. Chinese Journal of Rare Metals,2007,31(5):590-595.
[7]王瑞,李景丹,任树兰,等.固溶处理对316LN不锈钢晶粒长大及力学性能的影响[J].热加工工艺, 2018, 47(20):218-221.
Wang R, Li J D, Ren S L, et al. Effect of solution treatment on grain growth and mechanical properties of 316LN stainless steel[J]. Hot Working Technology, 2018, 47(20):218-221.
[8]丁海峰,杨吉春, 张春香,等.固溶处理对304L不锈钢晶粒长大及力学性能的影响[J]. 材料热处理学报, 2016, 37(8):102-107.
Ding H F, Yang J C, Zhang C X, et al. Effect of solution treatment on grain growth and mechanical properties of 304L stainless steel[J]. Transactions of Materials and Heat Treatment,2016, 37(8):102-107.
[9]薛忍让,宋志刚,郑文杰,等.固溶温度对316LN不锈钢组织及力学性能的影响[J].金属热处理,2013,38(4):88-91.
Xue R R,Song Z G, Zheng W J, et al. Effect of solution temperature on microstructure and mechanical properties of 316LN stainless steel[J]. Heat Treatment of Metals,2013,38(4):88-91.
[10]张弘斌,周海萍,张成才,等.形变热处理工艺参数对冷轧态镍基高温合金晶界特征分布演变的影响[J]. 稀有金属材料与工程,2020,49(11):3683-3691.
Zhang H B, Zhou H P, Zhang C C, et al. Influence of thermos-mechanical processing parameters on grain boundary character distribution evolution of cold-rolled Ni-based superalloys[J]. Rare Metal Materials and Engineering,2020, 49(11):3683-3691.
[11]Lee S J. Predictive model for austenite grain growth during reheating of alloy steels[J]. ISIJ International,2013,53(10):1902-1904.
[12]叶青,谌颖,陈博,等.Haynes 282新型高温合金晶粒长大行为及数学模型研究[J].宇航材料工艺, 2022, 52(5):35-42.
Ye Q, Shen Y, Chen B, et al. Study on grain growth behavior and mathematical model of a new-type superalloy Haynes 282[J]. Aerospace Material & Technology, 2022, 52(5):35-42.
[13]Gao N,Baker T N. Austenite grain growth behavior of microalloyed Al-V-N and Al-V-Ti-N steels[J]. ISIJ International,1998,38(7):744-751.
[14]Roy S,Chakrabarti D,Dey G K. Austenite grain structures in Ti- and Nb-containing high-strength low-alloy steel during slab reheating[J]. Metallurgical and Materials Transactions A, 2013,(2):44.
[15]Rapanelli M,Pittenger C. Histamine and histamine receptors in Tourette syndrome and other neuropsychiatric conditions[J]. Neuropharmacology,2016,106:85-90.
[16]付建辉,周扬,赖宇,等.固溶处理对GH4169合金晶粒长大和硬度的影响[J].金属热处理, 2021, 46(1):75-80.
Fu J H, Zhou Y, Lai Y, et al. Effect of solution treatment on grain growth and hardness of GH4169 alloy[J]. Heat Treatment of Metals,2021, 46(1):75-80.
[17]刘毅.具有空间相依误差的面板数据自回归模型及参数估计的统计计算实现[D]. 成都:四川大学, 2007.
Liu Y. The Estimation and Statistical Computational Realization of the Parameters in Panel Data Autoregressive Models with Spatial Dependent Errors[D].Chengdu:Sichuan University, 2007. [18]Jain A, Varshney A K, Joshi U C. Short-term water demand forecast modelling at IIT kanpur using artificial neural networks[J]. Water Resources Management,2001, 15(5):299-321. [19]Liu Z B, Tu X, Wang X H, et al. Carbide dissolution and austenite grain growth behavior of a new ultrahigh-strength stainless steel[J]. Journal of Iron and Steel Research International,2020,27(6):732-741. [20]Mimaki T, Nakazawa Y, Hashimoto S, et al. Stress corrosion cracking of copper bicrystals with〈110〉-tilt ∑3,∑9,and ∑11 coincident site lattice boundaries[J]. Metallurgical and Materials Transactions A,1990,21(9):2355-2361. [21]吴昊.新型奥氏体不锈钢冷变形及退火组织和性能研究[D]. 秦皇岛:燕山大学,2021. Wu H. Study on Microstructure and Properties of New Austenitic Stainless Steel after Cold Deformation and Annealing[D]. Qinhuangdao:Yanshan University,2021.
|