网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
固溶处理对316不锈钢晶粒长大和硬度的影响
英文标题:Influence of solution treatment on grain growth and hardness for 316 stainless steel
作者:赵明1 常远2 宋耀辉1 李华英1  张铭心3 
单位:1.太原科技大学 2.太原重工股份有限公司 3.山西航天清华装备有限责任公司 
关键词:固溶处理 固溶温度 保温时间 晶粒尺寸 晶粒长大模型 硬度 
分类号:TG113
出版年,卷(期):页码:2024,49(3):194-201
摘要:

通过金相显微仪、电子背散射衍射和硬度计测量等手段,研究了1100~1175 ℃条件下固溶处理对316不锈钢的微观组织、晶界分布特征以及合金硬度的影响。同时,建立了Anelli晶粒长大模型。研究结果表明:随着固溶温度的增大和保温时间的延长,不锈钢的晶粒尺寸逐渐长大。当固溶温度超过1150 ℃、保温时间超过60 min时,晶粒尺寸增长迅速。基于晶界的重位点阵理论对晶界分布特征进行分析,结果表明,随着固溶温度的增大和保温时间延长,∑3、∑9和∑27晶界含量均下降,尤其∑3晶界含量下降明显,并且试样硬度也随之降低。固溶温度对晶粒尺寸和硬度的影响明显大于保温时间的作用。

The influences of solution treatment at 1100-1175 ℃ on the microstructure, grain boundary distribution characteristics and alloy hardness of 316 stainless steel were studied by means of metallographic microscopy, EBSD and microhardness tester. At the same time, the Anelli grain growth model was established. The results show that the grain size of stainless steel gradually grows with the increasing of solution temperature and the extension of holding time, when the solution temperature exceeds 1150 ℃ and the holding time exceeds 60 min, the grain size increases rapidly. Based on the concidence site lattice theory of grain boundaries, the distribution characteristics of grain boundaries were analyzed and found. With the increasing of solution temperature and the extension of holding time, the contents of ∑3, ∑9, and ∑27 grain boundaries all decrease, especially the grain boundary content of ∑3 decreases obviously, and the hardness of sample also decreases. The effect of solution temperature on the grain size and hardness is significantly greater than that of holding time.

基金项目:
山西省高等学校科技创新项目(2020L0333);山西省科技成果引导专项项目(202204021301057)
作者简介:
作者简介:赵明(1997-),男,硕士研究生,E-mail:251291106@qq.com;通信作者:李华英(1981-),男,博士,硕士生导师,副教授,E-mail:2014246@tyust.edu.cn
参考文献:

[1]中国机械工程学会铸造分会.铸造手册第3卷:铸造非铁合金[M]. 2版.北京:机械工业出版社,2011.


 

Casting Branch of Chinese Mechanical Engineering Society. Casting Manual Volume 3: Casting Non-ferrous Alloys [M]. 2nd Edition. Beijing: China Machine Press,2011.

 

[2]张树才. 超级奥氏体不锈钢S32654的制备及组织与性能研究[D].沈阳:东北大学, 2019.

 

Zhang S C. Manufacture,Microstructure and Properties of Super Austenitic Stainless Steel S32654[D]. Shenyang:Northeastern University,2019.

 

[3]周奠华,王建平,陈国胜,等. 一种高温合金的模缎方法[P].中国:CN200710042561.8,2008-12-31. 

 

Zhou D H, Wang J P, Chen G S,et al.Die forging method of high-temperature alloy[P].China:CN200710042561.8,2008-12-31.

 

[4]冯文. 304不锈钢晶界结构演化与晶粒尺寸和变形条件的相关性研究[D].南京:南京理工大学, 2019.

 

Feng W. Research on Dependence of the Evolution of Grain Boundary Structure on Grain Size and Deformation Conditions in 304 Austenitic Stainless Steel[D]. Nanjing:Nanjing University of Science & Technology,2019.

 

[5]张鹏,王智勇,尚峰,等.固溶处理对冷等静压成形双相不锈钢显微组织和耐腐蚀性能的影响[J].粉末冶金工业,2021,(1):64-68.

 

Zhang P, Wang Z Y, Shang F, et al. Effect of solution treatment on microstructure and corrosion resistance of duplex stainless steel fabricated by cold isostatic pressing [J]. Powder Metallurgy Industry,2021,(1):64-68.

 

[6]黄天林, 陈宏生, 刘伟,等. 冷轧多晶纯镍中晶界对显微硬度和微观组织结构的影响[J].稀有金属, 2007, 31(5):590-595.

 

Huang T L, Chen H S, Liu W, et al. Effect of grain boundaries on deformation structure and microhardness in cold-rolled polycrystalline nickel[J]. Chinese Journal of Rare Metals,2007,31(5):590-595.

 

[7]王瑞,李景丹,任树兰,等.固溶处理对316LN不锈钢晶粒长大及力学性能的影响[J].热加工工艺, 2018, 47(20):218-221.

 

Wang R, Li J D, Ren S L, et al. Effect of solution treatment on grain growth and mechanical properties of 316LN stainless steel[J]. Hot Working Technology, 2018, 47(20):218-221.

 

[8]丁海峰,杨吉春, 张春香,等.固溶处理对304L不锈钢晶粒长大及力学性能的影响[J]. 材料热处理学报, 2016, 37(8):102-107.

 

Ding H F, Yang J C, Zhang C X, et al. Effect of solution treatment on grain growth and mechanical properties of 304L stainless steel[J]. Transactions of Materials and Heat Treatment,2016, 37(8):102-107.

 

[9]薛忍让,宋志刚,郑文杰,等.固溶温度对316LN不锈钢组织及力学性能的影响[J].金属热处理,2013,38(4):88-91.

 

Xue R R,Song Z G, Zheng W J, et al. Effect of solution temperature on microstructure and mechanical properties of 316LN stainless steel[J]. Heat Treatment of Metals,2013,38(4):88-91.

 

[10]张弘斌,周海萍,张成才,等.形变热处理工艺参数对冷轧态镍基高温合金晶界特征分布演变的影响[J]. 稀有金属材料与工程,2020,49(11):3683-3691.

 

Zhang H B, Zhou H P, Zhang C C, et al. Influence of thermos-mechanical processing parameters on grain boundary character distribution evolution of cold-rolled Ni-based superalloys[J]. Rare Metal Materials and Engineering,2020, 49(11):3683-3691.

 

[11]Lee S J. Predictive model for austenite grain growth during reheating of alloy steels[J]. ISIJ International,2013,53(10):1902-1904.

 

[12]叶青,谌颖,陈博,等.Haynes 282新型高温合金晶粒长大行为及数学模型研究[J].宇航材料工艺, 2022, 52(5):35-42.

 

Ye Q, Shen Y, Chen B, et al. Study on grain growth behavior and mathematical model of a new-type superalloy Haynes 282[J]. Aerospace Material & Technology, 2022, 52(5):35-42.

 

[13]Gao N,Baker T N. Austenite grain growth behavior of microalloyed Al-V-N and Al-V-Ti-N steels[J]. ISIJ International,1998,38(7):744-751.

 

[14]Roy S,Chakrabarti D,Dey G K. Austenite grain structures in Ti- and Nb-containing high-strength low-alloy steel during slab reheating[J]. Metallurgical and Materials Transactions A, 2013,(2):44.

 

[15]Rapanelli M,Pittenger C. Histamine and histamine receptors in Tourette syndrome and other neuropsychiatric conditions[J]. Neuropharmacology,2016,106:85-90.

 

[16]付建辉,周扬,赖宇,等.固溶处理对GH4169合金晶粒长大和硬度的影响[J].金属热处理, 2021, 46(1):75-80.

 

Fu J H, Zhou Y, Lai Y, et al. Effect of solution treatment on grain growth and hardness of GH4169 alloy[J]. Heat Treatment of Metals,2021, 46(1):75-80.

 

[17]刘毅.具有空间相依误差的面板数据自回归模型及参数估计的统计计算实现[D]. 成都:四川大学, 2007.


Liu Y. The Estimation and Statistical Computational Realization of the Parameters in Panel Data Autoregressive Models with Spatial Dependent Errors[D].Chengdu:Sichuan University, 2007.

 

[18]Jain A, Varshney A K, Joshi U C. Short-term water demand forecast modelling at IIT kanpur using artificial neural networks[J]. Water Resources Management,2001, 15(5):299-321.

 

[19]Liu Z B, Tu X, Wang X H, et al. Carbide dissolution and austenite grain growth behavior of a new ultrahigh-strength stainless steel[J]. Journal of Iron and Steel Research International,2020,27(6):732-741.

 

[20]Mimaki T, Nakazawa Y, Hashimoto S, et al. Stress corrosion cracking of copper bicrystals with〈110〉-tilt ∑3,∑9,and ∑11 coincident site lattice boundaries[J]. Metallurgical and Materials Transactions A,1990,21(9):2355-2361.

 

[21]吴昊.新型奥氏体不锈钢冷变形及退火组织和性能研究[D]. 秦皇岛:燕山大学,2021.

 

Wu H. Study on Microstructure and Properties of New Austenitic Stainless Steel after Cold Deformation and Annealing[D]. Qinhuangdao:Yanshan University,2021.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9