[1]Chen X M, Ning M T, Hu H W, et al. Characterization of hot deformation behavior and optimization of hot workability for GH4698 superalloy[J]. Materials Characterization, 2023, 201: 112916.
[2]Yan P Z, Wen D X, Yang L, et al. Evolution of microstructure and δ phase in an aging-treated nickel-based superalloy during hot compression[J]. Materials Characterization, 2023, 200: 112876.
[3]Zhao M J, Huang L, Li C M, et al. Evaluation of the deformation behaviors and hot workability of a high-strength low-alloy steel[J]. Materials Science and Engineering: A, 2021, 810: 141031.
[4]Huang L, Li C M, Li C L, et al. Research progress on microstructure evolution and hot processing maps of high strength β titanium alloys during hot deformation[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(12): 3835-3859.
[5]Liu Y, Li M, Ren X W, et al. Flow stress prediction of Hastelloy C-276 alloy using modified Zerilli-Armstrong, Johnson-Cook and Arrhenius-type constitutive models[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3031-3042.
[6]刘剑箫, 翟月雯, 姜超,等. 真空固溶态FGH4096高温合金的热变形行为及本构模型[J]. 锻压技术, 2023, 48(5): 306-313.
Liu J X, Zhai Y W, Jiang C, et al. Thermal deformation behavior and constitutive equation on superalloy FGH4096 in vacuum solid solution state[J]. Forging & Stamping Technology, 2023, 48(5): 306-313.
[7]杨波, 吴诗豪, 包振男,等. GH3128合金热变形行为与唯象本构模型[J]. 锻压技术, 2022, 47(5): 226-234.
Yang B, Wu S H, Bao Z N, et al. Thermal deformation behavior and phenomenological constitutive model for GH3128 alloy[J]. Forging & Stamping Technology, 2022, 47(5): 226-234.
[8]He D G, Yan X T, Lin Y C, et al. Microstructure evolution and constitutive model for a Ni-Mo-Cr base alloy in double-stages hot compression with step-strain rates[J]. Materials Characterization, 2022, 194: 112385.
[9]Li C M, Huang L, Zhao M J, et al. Influence of hot deformation on dynamic recrystallization behavior of 300M steel: Rules and modeling[J]. Materials Science and Engineering: A, 2020, 797: 139925.
[10]Zeng R, Huang L, Li J J, et al. Quantification of multiple softening processes occurring during multi-stage thermoforming of high-strength steel[J]. International Journal of Plasticity, 2019, 120: 64-87.
[11]Sellar C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[12]白洁, 马瑞, 王亚军,等. 选区激光熔化GH3536高温合金高温本构模型[J]. 锻压技术, 2023, 48(7): 234-241.
Bai J, Ma R, Wang Y J, et al. High temperature constitutive model for superalloy GH3536 by selective laser melting[J]. Forging & Stamping Technology, 2023, 48(7): 234-241.
[13]Slooff F A, Zhou J, Duszczyk J. Constitutive analysis of wrought magnesium alloy Mg-Al4-Zn1[J]. Scripta Materialia, 2007, 57(8): 759-762.
[14]章晓婷, 黄亮, 李建军,等. 300M高强钢高温流变行为及本构方程[J].中南大学学报:自然科学版, 2017, 48(6): 1439-1447.
Zhang X T, Huang L, Li J J, et al. Flow behaviors and constitutive model of 300M high strength steel at elevated temperature[J]. Journal of Central South University:Science and Technology, 2017, 48(6): 1439-1447.
[15]Chen X R, Liao Q Y, Niu Y X, et al. A constitutive relation of AZ80 magnesium alloy during hot deformation based on Arrhenius and Johnson-Cook model[J]. Journal of Materials Research and Technology, 2019, 8(2): 1859-1869.
[16]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel[J]. Materials Science and Engineering: A, 2010, 527(26): 6980-6986.
[17]王亮, 贾海深, 张继林,等. 基于J-C模型440C不锈钢动态本构关系的修正[J]. 机械强度, 2023, 45(4): 805-813.
Wang L, Jia H S, Zhang J L, et al. Modification of dynamic constitutive relation of 440C stainless steel based on J-C model[J]. Journal of Mechanical Strength, 2023, 45(4): 805-813.
[18]Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.
[19]Nitin K, Hansoge N K, Pavan P, et al. Microstructure study and constitutive modeling of Ti-6Al-4V alloy at elevated temperatures[J]. Materials & Design, 2014, 54: 96-103.
[20]Samantaray D, Mandal S, Bhaduri A K. Analysis and mathematical modelling of elevated temperature flow behaviour of austenitic stainless steels[J]. Materials Science and Engineering: A, 2011, 528: 1937-1943.
[21]Li C M, Huang L, Zhao M J, et al. Study on microstructure evolution and deformation mechanism of Ti-6554 based on power dissipation efficiency at supertransus temperatures[J]. Journal of Alloys and Compounds, 2022, 924: 166481.
[22]Li C M, Huang L, Zhao M J,et al. Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti-6Cr-5Mo-5V-4Al in single phase region[J]. Materials Science and Engineering: A, 2021, 814: 141231.
[23]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1994, 15(1): 22-32.
[24]Chao Z L, Jiang L T, Chen G Q,et al. A modified Johnson-Cook model with damage degradation for B4Cp/Al composites[J]. Composite Structures, 2022, 282(15): 115029.
[25]Samantaray D, Mandal S, Borah U. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science and Engineering: A, 2009, 526: 1-6.
[26]He A, Xie G L, Zhang H L, et al. A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel[J]. Materials & Design, 2013, 52: 677-685.
[27]Zhan H Y, Wang G, Kent D, et al. Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the Johnson-Cook and modified Zerilli-Armstrong models[J]. Materials Science and Engineering: A, 2014, 612: 71-79.
[28]Li H Y, Li Y H, Wang X F, et al. A comparative study on modified Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel[J]. Materials & Design, 2013, 49: 493-501.
[29]郭淑玲. 热加工历程对GH4698显微组织的影响[D]. 秦皇岛: 燕山大学, 2021.
Guo S L. Effect of Hot Working Process on Microstructure of GH4698[D]. Qinhuangdao: Yanshan University, 2021.
[30]胡超. GH4698镍基高温合金热塑性变形行为研究[D].哈尔滨: 哈尔滨工业大学, 2016.
Hu C. Research on Hot Plastic Deformation Behavior of GH4698 Nickel-based Superalloy[D]. Harbin: Harbin Institute of Technology, 2016.
[31]景阳端. GH4698涡轮盘等温锻造过程中晶粒演化行为及其数值模拟[D]. 秦皇岛: 燕山大学, 2017.
Jing Y D. The Behavior of Grain Evolution and Its Numerical Simulation During Isothermal Forging of GH4698 Turbine Disk[D]. Qinhuangdao: Yanshan University, 2017.
[32]Li F, Zhu C C, Li S J, et al. A comparative study on modified and optimized Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 30Si2MnCrMoVE steel[J]. Journal of Materials Research and Technology, 2022, 20: 3918-3929.
|