网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
GH4698合金流动应力及本构方程研究
英文标题:Research on flow stress and constitutive equation for GH4698 alloy
作者:李中豪1 黄亮1 班宜杰1 温东旭1 李建军1 2 蒋乔3 4 杨晓利3 4  张健3 4 张志成4 
单位:1. 华中科技大学 2. 湖北黄石模具产业技术研究院 3. 大冶特殊钢有限公司 4. 高品质特殊钢湖北省重点实验室 
关键词:GH4698合金 热变形行为 本构模型 流动应力 预测精度 
分类号:TG132.3
出版年,卷(期):页码:2024,49(3):207-218
摘要:

采用Gleeble-3500热模拟实验机对GH4698合金进行了热压缩实验,研究了其在变形温度为960~1160 ℃、应变速率为0.001~10 s-1和变形程度为50%条件下的热变形行为,并基于真应力-真应变数据建立了唯象型和物理基本构模型以预测合金的高温流动行为。结果表明:GH4698合金热压缩过程中流动应力呈先急剧上升后逐渐平缓的特征,流动应力与变形温度呈负相关,与应变速率呈正相关。4种本构模型中,应变补偿型Arrhenius模型的预测精度最高,而改良的Zerilli-Armstrong模型相较于修正的Zerilli-Armstrong模型预测精度更高。

The hot compression experiment of GH4698 alloy was carried out by thermal simulation machine Gleeble-3500, and the hot deformation behavior of GH4698 alloy was studied under the deformation temperature of 960-1160 ℃, the strain rate of 0.001-10 s-1 and the deformation degree of 50%. Then, based on the true stress-true strain data, phenomenological model and physical constitutive model were established to predict the flow behavior of alloy at high temperature. The results show that the flow stress of GH4698 alloy increases sharply at first and then becomes gentle gradually during the process of hot compression. The flow stress is negatively correlated with the deformation temperature and positively correlated with the strain rate. In the four constitutive models, the strain-compensated Arrhenius model has the highest prediction accuracy, and the improved Zerilli-Armstrong model has higher prediction accuracy than the modified Zerilli-Armstrong model.

基金项目:
国家重点研发计划(2022YFB3706903,2022YFB3706901);湖北省重点研发计划(2022BAA024)
作者简介:
作者简介:李中豪(1999-),男,硕士研究生,E-mail:M202171017@hust.edu.cn;通信作者:黄亮(1981-),男,博士,教授,E-mail:huangliang@hust.edu.cn
参考文献:

[1]Chen X M, Ning M T, Hu H W, et al. Characterization of hot deformation behavior and optimization of hot workability for GH4698 superalloy[J]. Materials Characterization, 2023, 201: 112916.


 

[2]Yan P Z, Wen D X, Yang L, et al. Evolution of microstructure and δ phase in an aging-treated nickel-based superalloy during hot compression[J]. Materials Characterization, 2023, 200: 112876.

 

[3]Zhao M J, Huang L, Li C M, et al. Evaluation of the deformation behaviors and hot workability of a high-strength low-alloy steel[J]. Materials Science and Engineering: A, 2021, 810: 141031.

 

[4]Huang L, Li C M, Li C L, et al. Research progress on microstructure evolution and hot processing maps of high strength β titanium alloys during hot deformation[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(12): 3835-3859.

 

[5]Liu Y, Li M, Ren X W, et al. Flow stress prediction of Hastelloy C-276 alloy using modified Zerilli-Armstrong, Johnson-Cook and Arrhenius-type constitutive models[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3031-3042.

 

[6]刘剑箫, 翟月雯, 姜超,等. 真空固溶态FGH4096高温合金的热变形行为及本构模型[J]. 锻压技术, 2023, 48(5): 306-313.

 

Liu J X, Zhai Y W, Jiang C, et al. Thermal deformation behavior and constitutive equation on superalloy FGH4096 in vacuum solid solution state[J]. Forging & Stamping Technology, 2023, 48(5): 306-313.

 

[7]杨波, 吴诗豪, 包振男,等. GH3128合金热变形行为与唯象本构模型[J]. 锻压技术, 2022, 47(5): 226-234.

 

Yang B, Wu S H, Bao Z N, et al. Thermal deformation behavior and phenomenological constitutive model for GH3128 alloy[J]. Forging & Stamping Technology, 2022, 47(5): 226-234.

 

[8]He D G, Yan X T, Lin Y C, et al. Microstructure evolution and constitutive model for a Ni-Mo-Cr base alloy in double-stages hot compression with step-strain rates[J]. Materials Characterization, 2022, 194: 112385.

 

[9]Li C M, Huang L, Zhao M J, et al. Influence of hot deformation on dynamic recrystallization behavior of 300M steel: Rules and modeling[J]. Materials Science and Engineering: A, 2020, 797: 139925.

 

[10]Zeng R, Huang L, Li J J, et al. Quantification of multiple softening processes occurring during multi-stage thermoforming of high-strength steel[J]. International Journal of Plasticity, 2019, 120: 64-87.

 

[11]Sellar C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.

 

[12]白洁, 马瑞, 王亚军,等. 选区激光熔化GH3536高温合金高温本构模型[J]. 锻压技术, 2023, 48(7): 234-241.

 

Bai J, Ma R, Wang Y J, et al. High temperature constitutive model for superalloy GH3536 by selective laser melting[J]. Forging & Stamping Technology, 2023, 48(7): 234-241.

 

[13]Slooff F A, Zhou J, Duszczyk J. Constitutive analysis of wrought magnesium alloy Mg-Al4-Zn1[J]. Scripta Materialia, 2007, 57(8): 759-762.

 

[14]章晓婷, 黄亮, 李建军,等. 300M高强钢高温流变行为及本构方程[J].中南大学学报:自然科学版, 2017, 48(6): 1439-1447.

 

Zhang X T, Huang L, Li J J, et al. Flow behaviors and constitutive model of 300M high strength steel at elevated temperature[J]. Journal of Central South University:Science and Technology, 2017, 48(6): 1439-1447.

 

[15]Chen X R, Liao Q Y, Niu Y X, et al. A constitutive relation of AZ80 magnesium alloy during hot deformation based on Arrhenius and Johnson-Cook model[J]. Journal of Materials Research and Technology, 2019, 8(2): 1859-1869.

 

[16]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel[J]. Materials Science and Engineering: A, 2010, 527(26): 6980-6986.

 

[17]王亮, 贾海深, 张继林,等. 基于J-C模型440C不锈钢动态本构关系的修正[J]. 机械强度, 2023, 45(4): 805-813.

 

Wang L, Jia H S, Zhang J L, et al. Modification of dynamic constitutive relation of 440C stainless steel based on J-C model[J]. Journal of Mechanical Strength, 2023, 45(4): 805-813.

 

[18]Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825. 

 

[19]Nitin K, Hansoge N K, Pavan P, et al. Microstructure study and constitutive modeling of Ti-6Al-4V alloy at elevated temperatures[J]. Materials & Design, 2014, 54: 96-103.

 

[20]Samantaray D, Mandal S, Bhaduri A K. Analysis and mathematical modelling of elevated temperature flow behaviour of austenitic stainless steels[J]. Materials Science and Engineering: A, 2011, 528: 1937-1943.

 

[21]Li C M, Huang L, Zhao M J, et al. Study on microstructure evolution and deformation mechanism of Ti-6554 based on power dissipation efficiency at supertransus temperatures[J]. Journal of Alloys and Compounds, 2022, 924: 166481.

 

[22]Li C M, Huang L, Zhao M J,et al. Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti-6Cr-5Mo-5V-4Al in single phase region[J]. Materials Science and Engineering: A, 2021, 814: 141231.

 

[23]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1994, 15(1): 22-32.

 

[24]Chao Z L, Jiang L T, Chen G Q,et al. A modified Johnson-Cook model with damage degradation for B4Cp/Al composites[J]. Composite Structures, 2022, 282(15): 115029.

 

[25]Samantaray D, Mandal S, Borah U. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science and Engineering: A, 2009, 526: 1-6.

 

[26]He A, Xie G L, Zhang H L, et al. A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel[J]. Materials & Design, 2013, 52: 677-685.

 

[27]Zhan H Y, Wang G, Kent D, et al. Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the Johnson-Cook and modified Zerilli-Armstrong models[J]. Materials Science and Engineering: A, 2014, 612: 71-79.

 

[28]Li H Y, Li Y H, Wang X F, et al. A comparative study on modified Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel[J]. Materials & Design, 2013, 49: 493-501.

 

[29]郭淑玲. 热加工历程对GH4698显微组织的影响[D]. 秦皇岛: 燕山大学, 2021.

 

Guo S L. Effect of Hot Working Process on Microstructure of GH4698[D]. Qinhuangdao: Yanshan University, 2021.

 

[30]胡超. GH4698镍基高温合金热塑性变形行为研究[D].哈尔滨: 哈尔滨工业大学, 2016.

 

Hu C. Research on Hot Plastic Deformation Behavior of GH4698 Nickel-based Superalloy[D]. Harbin: Harbin Institute of Technology, 2016.

 

[31]景阳端. GH4698涡轮盘等温锻造过程中晶粒演化行为及其数值模拟[D]. 秦皇岛: 燕山大学, 2017.

 

Jing Y D. The Behavior of Grain Evolution and Its Numerical Simulation During Isothermal Forging of GH4698 Turbine Disk[D]. Qinhuangdao: Yanshan University, 2017.

 

[32]Li F, Zhu C C, Li S J, et al. A comparative study on modified and optimized Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 30Si2MnCrMoVE steel[J]. Journal of Materials Research and Technology, 2022, 20: 3918-3929.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9