网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轻轨用55Q钢的高温流变应力本构模型
英文标题:High temperature rheology stress constitutive model of 55Q steel for light rail
作者:刘宇昊1 朱国明1 平玉2 邝霜2 安会龙3 
单位:1.北京科技大学 2.唐山钢铁集团有限责任公司 技术中心 3.河钢集团钢研总院 
关键词:55Q钢 流变应力 动态软化 本构模型 预测精度 
分类号:TG142.1
出版年,卷(期):页码:2024,49(3):219-229
摘要:

通过Gleeble-3800热模拟实验机,在应变速率为0.1~20 s-1、变形温度为900~1200 ℃的条件下对轻轨用55Q钢进行轴向单道次压缩实验,得到55Q钢的真应力-真应变曲线,并分析研究了不同热加工条件对55Q钢高温流变应力的影响。实验结果表明:在相同变形温度下,低应变速率时的流变应力较低,在相同应变速率下,高温时的流变应力较低,说明低应变速率和高温有利于动态软化。对流变应力、应变速率和变形温度之间的关系进行线性拟合,建立了55Q钢的修正Johnson-Cook本构模型和基于应变补偿的Arrhenius本构模型,对比两种模型发现,基于应变补偿的Arrhenius本构模型的预测精度更高,能够较好地揭示55Q钢的热变形特性。

The axial single-pass compression experiment of 55Q steel for light rail was conducted under the condition of the strain rate of 0.1-20 s-1 and the deformation temperature of 900-1200 ℃ by thermal simulation experiment machine Gleeble-3800. Then, the true stress-true strain curve of 55Q steel was obtained, and the influences of different hot working conditions on the rheology stress of 55Q steel for light rail were studied. The experiment results show that the rheology stress is lower under low strain rate at the same deformation temperature, and the rheology stress is lower at high temperature at the same strain rate, which indicates that low strain rate and high temperature are conducive to dynamic softening. The relationships between rheology stress, strain rate and deformation temperature were fitted linearly, and the modified Johnson-Cook constitutive model and the Arrhenius constitutive model based on strain compensation of 55Q steel were established. The two models were compared and analyzed. It is found that the Arrhenius constitutive model based on strain compensation has higher precision, which better reveals the thermal deformation characteristics of 55Q steel.

基金项目:
国家重点研发计划(2021YFB3401000);河钢集团重点科技项目(HG2021219)
作者简介:
作者简介:刘宇昊(1999-),男,硕士研究生,E-mail:lyh08082021@163.com;通信作者:朱国明(1974-),男,博士,教授,博士生导师,E-mail:zhuguoming@ustb.edu.cn
参考文献:

[1]谢仕柜,李世俊.冶金部“八五”期间120个重点钢材品种简介(一)[J].轧钢,1990,(4):1-5.


 

Xie S G, Li S J. Introduction of 120 key steel varieties during the “eighth five-year plan” of the ministry of metallurgy (I)[J]. Steel Rolling, 1990,(4):1-5.

 

[2]曹国利,崔凯,李莉,等.长春轻轨发展历程及特点[J].都市快轨交通,2020,33(5):73-79.

 

Cao G L, Cui K, Li L, et al. Developmental history and characteristics of Changchun light rail transit[J]. Urban Rapid Rail Transit, 2020,33(5):73-79.

 

[3]孙蓟泉,张金旺,王永春.SPHC钢热变形行为的研究[J].钢铁,2008,(9):44-48,62.

 

Sun J Q, Zhang J W, Wang Y C. Study on hot deformation behavior of SPHC steel[J]. Iron & Steel,2008,(9):44-48,62.

 

[4]周纪华,管克智.金属塑性变形阻力[M].北京:机械工业出版社,1989.

 

Zhou J H, Guan K Z. The Resistance to Plastic Deformation of Metals[M]. Beijing: China Machine Press,1989.

 

[5]刘勇.含钒低合金钢高温变形抗力研究及应用[J].钢铁钒钛,2012,33(5):60-65.

 

Liu Y. Research and application of high temperature deformation resistance in low-alloy steel with vanadium[J]. Iron Steel Vanadium Titanium,2012,33(5):60-65.

 

[6]赵志业.金属塑性变形与轧制理论[M].北京:冶金工业出版社,1992.

 

Zhao Z Y. Metal Plastic Deformation and Rolling Theory[M]. Beijing: Metallurgical Industry Press, 1992.

 

[7]王梦寒,陈明亮,王瑞,等.2Cr12NiMo1W1V超临界钢高温流变应力模型及热加工图[J].中南大学学报:自然科学版,2016,47(3):741-748.

 

Wang M H, Chen M L, Wang R, et al. High temperature flow stress model and hot processing map for 2Cr12NiMo1W1V supercritical steel[J]. Journal of Central South University:Science and Technology, 2016,47(3):741-748.

 

[8]张静,蒋春霞,乔帮威.14Cr17Ni2钢高温变形行为及本构方程的研究[J].热加工工艺,2018,47(14):38-43.

 

Zhang J, Jiang C X, Qiao B W. Deformation behavior and constitutive equation of 14Cr17Ni2 steel at high temperature[J]. Hot Working Technology, 2018,47(14):38-43.

 

[9]张龙,王东城,马晓宝,等.30Cr2Ni2Mo合金钢高温流变应力模型[J].塑性工程学报,2017,24(4):144-149,172.

 

Zhang L, Wang D C, Ma X B, et al. Flow stress model of alloy steel 30Cr2Ni2Mo at high temperature[J]. Journal of Plasticity Engineering, 2017,24(4):144-149,172.

 

[10]李冬升,赵恩旭,王威,等.IN690合金的高温本构模型及动态再结晶模型[J].金属热处理,2021,46(8):8-14.

 

Li D S, Zhao E X, Wang W, et al. High temperature constitutive model and dynamic recrystallization model of IN690 alloy[J]. Heat Treatment of Metals, 2021,46(8):8-14.

 

[11]Naderi M, Durrenberger L, Molinari A, et al. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures[J]. Materials Science and Engineering: A, 2008, 478(1-2): 130-139.

 

[12]Xiong Y B, Wen D X, Li J J, et al. High-temperature deformation characteristics and constitutive model of an ultrahigh strength steel[J]. Metals and Materials International, 2021, 27: 3945-3958.

 

[13]李波,朱国明,康永林,等.U75V钢轨轧制模拟物性参数的测定及研究[J].热加工工艺,2014,43(17):24-28.

 

Li B, Zhu G M, Kang Y L, et al. Determination and study of physical parameters of U75V rail rolling simulation[J]. Hot Working Technology, 2014,43(17):24-28.

 

[14]刘雅政,任学平,王自东,等.材料成形理论基础[M].北京:国防工业出版社,2004.

 

Liu Y Z, Ren X P, Wang Z D, et al. Theoretical Basis of Material Forming[M]. Beijing: National Defense Industry Press,2004.

 

[15]Chen L, Zhao G Q, Yu J Q. Hot deformation behavior and constitutive modeling of homogenized 6026 aluminum alloy[J]. Materials & Design, 2015, 74:25-35.

 

[16]Notta-Cuvier D, Langrand B, Markiewicz E, et al. Identification of Johnson-Cook′s viscoplastic model parameters using the virtual fields method: Application to titanium alloy Ti6Al4V[J]. Strain, 2013, 49(1):22-45.

 

[17]Lin Y C, Chen X M. A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel[J]. Computational Materials Science, 2010, 49(3):628-633.

 

[18]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.

 

[19]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

 

[20]魏海莲,周红伟,潘红波.微合金化高强钢的热变形行为及物理本构方程[J].锻压技术,2022,47(5):217-225.

 

Wei H L, Zhou H W, Pan H B. Hot deformation behaviors and physical constitutive equation of microalloyed high-strength steel[J]. Forging & Stamping Technology, 2022,47(5):217-225.

 

[21]向彪,张鹏,崔明亮.TB6钛合金的热加工工艺优化与组织预测[J].塑性工程学报,2022,29(7):107-118.

 

Xiang B, Zhang P, Cui M L. Hot working process optimization and microstructure prediction of TB6 titanium alloy[J]. Journal of Plasticity Engineering, 2022,29(7):107-118.

 

[22]刘坚,霍庆辉,汪宏斌,等.圆盘剪用YC1钢的热变形行为及热加工图[J].上海金属,2022,44(4):76-82.

 

Liu J, Huo Q H, Wang H B, et al. Hot deformation behavior and hot working map of YC1 steel for circular shear[J]. Shanghai Metals, 2022,44(4):76-82.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9