网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于GISSMO断裂失效模型的高强钢落锤压溃仿真分析
英文标题:Simulation analysis on drop hammer crush of high-strength steel based on GISSMO fracture failure model
作者:孔玉强 张晓莹 段朋 王桂录 
单位:郑州科技学院 
关键词:高扩孔钢  断裂失效  落锤压溃 应力三轴度 失稳曲线 
分类号:TG386;TG146
出版年,卷(期):页码:2024,49(3):230-239
摘要:

选取不同性能的DP980钢开展落锤压溃测试过程失效分析。基于GISSMO断裂失效模型,设计了5种不同的断裂失效试样,获取了断裂时刻的等效塑性应变,并搭建了仿真分析模型,提取了各试样断裂时的应力三轴度,拟合获得了断裂失效曲线和塑性失稳曲线。采用仿真和试验相结合的方法,对材料的承载和吸能、不同位置单元的失效过程及相同位置单元的损伤进行了对比分析。研究结果表明:高扩孔性能DP980钢的扩孔率达到了77.6%,明显高于普通DP980钢,其局部延展性也大于普通DP980钢;高扩孔性能DP980钢单位压溃位移吸收能量比普通DP980钢提升了21.74%,表现出更好的吸能特性。

The DP980 steels with different properties were selected to carry out the failure analysis of drop hammer crushing test process. Based on the GISSMO fracture failure model, five different fracture failure samples were designed,and the equivalent plastic strain at the fracture time was obtained. The simulation analysis model was built, the stress triaxiality of each sample at the fracture time was extracted, and the fracture failure curve and the plastic instability curve were obtained by fitting. The comparative analysis on the bearing and energy absorption for materials,the failure processes of elements at different positions and the damage of elements at the same position were carried out by the combination method of simulation and experiment. The research results show that the hole expansion rate of DP980 steel with high hole-expanding performance reaches 77.6%, which is significantly higher than that of ordinary DP980 steel,and its local extensibility is larger than that of ordinary DP980 steel. The unit crushing displacement energy absorption of DP980 steel with high hole-expanding performance is 21.74% higher than that of ordinary DP980 steel, which showing better energy absorption characteristics. 

基金项目:
河南省科技厅科技攻关项目(232102220076);河南省高等学校重点科研项目(24B413011);郑州科技学院科技攻关项目(2022XJKY09)
作者简介:
作者简介:孔玉强(1989-),男,硕士,讲师,E-mail:sxymtxy@163.com;通信作者:张晓莹(1985-),女,硕士,副教授,E-mail:funworldzxy@163.com
参考文献:

[1]朱国森,韩赟,蒋光锐,等. 汽车车身用新型冷轧薄板研发进展[J]. 工程科学学报,2022,44(9):1585-1594.


 

Zhu G S, Han Y, Jiang G R, et al. Research and development progress of new cold rolled sheet steels of car body [J]. Chinese Journal of Engineering,2022,44(9):1585-1594.

 

[2]余立,刘静,葛锐,等.DP780双相钢在不同应变状态下的断裂特性及机理[J].锻压技术,2022,47(10):48-55.

 

Yu L, Liu J, Ge R, et al. Fracture characteristics and mechanism on DP780 dual-phase steel under different strain states [J]. Forging & Stamping Technology, 2022, 47(10):48-55.

 

[3]Luo M, Wierzbicki T. Numerical failure analysis of a stretch-bending test on dual-phase steel sheets using a phenomenological fracture model [J]. International Journal of Solids and Structures, 2010, 47(22-23):3084-3102.

 

[4]陈自凯,张骥超,徐晨阳.考虑成形损伤的DP980钢板GISSMO失效模型开发及试验验证[J].锻压技术,2022,47(4):110-118.

 

Chen Z K, Zhang J C, Xu C Y. Development on failure model GISSMO of DP980 steel sheet and experimental verification considering forming damage [J]. Forging & Stamping Technology, 2022, 47(4):110-118.

 

[5]周佳, 梁宾, 赵岩, 等. 复杂应力状态下车用高强钢断裂失效行为表征与应用研究[J].塑性工程学报, 2021, 28(3):153-163.

 

Zhou J, Liang B, Zhao Y, et al. Research on characterization and application of fracture failure behavior of automotive high-strength steel under complex stress state [J]. Journal of Plasticity Engineering, 2021, 28(3):153-163.

 

[6]张伟,潘跃,刘华赛,等.应变速率对增强成形性双相钢性能影响分析[J].钢铁,2022,57(4):123-129. 

 

Zhang W, Pan Y, Liu H S, et al. Effect of strain rate on properties of dual phase steel with high formability [J]. Iron and Steel, 2022,57(4):123-129. 

 

[7]王文龙,张翠杰,韩烨. 基于零件压溃试验加工硬化对吸能特性影响分析[J]. 机械设计与制造,2022,(12):184-188. 

 

Wang W L, Zhang C J, Han Y. Influence analysis of work hardening on energy absorption characteristics based on the parts drop test [J]. Machinery Design & Manufacture,2022,(12):184-188.

 

[8]Neukamm F, Feucht M, Haufe A. Consistent damage modelling in the process chain of forming to crashworthiness simulations[A]. Proceeding of the 7th German LS-DYNA Forum[C].Bamberg, 2008.

 

[9]Neukamm F, Feucht M, Haufe A. Considering damage history in crashworthiness simulations[A]. Proceedings of the 7th European LS-DYNA Conference[C].Salzburg, 2009.

 

[10]Dai M H, Ying L, Wang S S, et al. Modeling the crashworthiness analysis of functional graded strength thin-walled structure with phenomenological GISSMO model[J]. Thin-Walled structures, 2022, 180:109766.

 

[11]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

 

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

 

[12]GB/T 15825.4—2008, 金属薄板成形性能与试验方法第4部分:扩孔试验[S].

 

GB/T 15825.4—2008, Sheet metal formability and test methods—Part 4: Method of hole expanding test [S].

 

[13]鎮西将太, 内藤純也. 高強度薄板金属材料の破断予測シミュレーション[J].神戸製鋼技報, 2017, 66(2): 76-81.

 

Chinzei S, Naito J. Simulation to predict failure in high-strength steel sheet [J].Kobe Steel Engineering Reports, 2017, 66(2):76-81.

 

[14]张骥超, 连昌伟, 韩非. 第三代超高强钢QP1180硬化与失效行为研究[J]. 机械工程学报, 2022, 58(8):117-125. 

 

Zhang J C, Lian C W, Han F. Study on hardening and failure behavior of the 3rd generation ultra-high strength steel QP1180 [J]. Journal of Mechanical Engineering, 2022, 58(8):117-125.

 

[15]赖兴华,尹斌. 高应变率下高强钢的塑性力学行为及本构模型[J]. 汽车安全与节能学报, 2017, 8(2): 157-163.

 

Lai X H, Yin B. Plastic mechanical behavior and constitutive modeling of high-strength steel at high strain rates [J]. Journal of Automotive Safety and Energy, 2017, 8(2): 157-163.

 

[16]吴文明,千志科,田晓光,等. 采用动态冲击汽车零件材料承载特性分析[J]. 机械设计与制造,2023,387(5):117-120,125. 

 

Wu W M, Qian Z K, Tian X G, et al. Analysis of load bearing characteristics of parts material based on drop hammer impact [J]. Machinery Design & Manufacture,2023,387(5):117-120,125.

 

[17]J0709—2013, 汽车板典型构件的压溃吸能试验方法[S].

 

J0709—2013, Test specifications for typical components of automobile steel sheet [S].

 

[18]钱凌云, 马腾云, 安鹏, 等. 金属薄板面内压剪变形的损伤断裂行为[J]. 工程科学学报, 2021, 43(2): 263-272.

 

Qian L Y, Ma T Y, An P, et al. Damage and fracture behavior of a metal sheet under in-plane compression-sheardeformation [J]. Chinese Journal of Engineering, 2021, 43(2): 263-272.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9