网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Q355B钢热变形行为及应变补偿型本构方程
英文标题:Thermal deformation behavior and strain-compensated constitutive equation of Q355B steel
作者:侯东1 2 聂京凯1 2 韩钰1 2 陈国宏3 刘晓圣1 2 姬军1 2 
单位:1.国网智能电网研究院有限公司 先进输电技术全国重点实验室 2.国网智能电网研究院有限公司 电工新材料研究所 3.国网安徽省电力有限公司 
关键词:Q355B钢 热变形 微观组织 应变补偿 本构方程 
分类号:TG142.1; TM201.4
出版年,卷(期):页码:2024,49(3):240-250
摘要:

在Gleeble-3500热模拟实验机上进行等温热拉伸实验,研究了Q355B钢在变形温度为500~1100 ℃和应变速率为0.001~0.1 s-1条件下的热变形行为及微观组织演变,并建立了本构方程。结果表明,Q355B钢的微观组织主要由铁素体和珠光体组成,随着变形温度的升高,珠光体体积分数增加,且组织形貌逐步由低温带状演变为中温等轴状及高温魏氏形貌。Q355B钢的流动行为敏感于应变速率和变形温度,其流动应力随着变形温度的升高或应变速率的降低显著降低。此外,流动应力曲线在高温(1100 ℃)及低应变速率(0.001和0.01s-1)时为动态再结晶型,而在低温及高应变速率下则为动态回复型。考虑应变补偿的Arrhenius双曲正弦本构方程的预测精度较高,可较好地拟合不同变形条件下Q355B钢的流动行为。各变形条件下的相关系数均在91%以上,相对平均误差均不超过13.4%。

 

The isothermal thermal tensile test was conducted by Gleeble-3500 thermal simulation machine, and the thermal deformation behavior and microstructure evolution of Q355B steel at the deformation temperature of 500-1100 ℃ and the strain rate of 0.001-0.1 s-1 were studied to establish the constitutive equation. The results show that the microstructure of Q355B steel is mainly composed of ferrite and pearlite. With the increasing of deformation temperature, the volume fraction of pearlite increases, and the microstructure morphology gradually evolves from low temperature band to medium temperature equiaxed and high temperature widmanstatten morphology. The flow behavior of Q355B steel is sensitive to strain rate and deformation temperature, and its flow stress decreases significantly with the increasing of deformation temperature or the decreasing of strain rate. In addition, the flow stress curve is dynamic recrystallization type at the high temperature of 1100 ℃ and the low strain rates of 0.001 and 0.01 s-1, while it is a dynamic recovery type at low temperature and high strain rate. The Arrhenius hyperbolic sine constitutive equation considering strain compensation has high prediction accuracy and can better fit the flow behavior of Q355B steel under different deformation strains. The correlation coefficients under different deformation conditions are all more than 91%, and the average absolute relative errors are all less than 13.4%.

基金项目:
国家电网公司总部科技项目(5500-202158330A-0-0-00)
作者简介:
作者简介:侯东(1990-),男,硕士,工程师,E-mail:hd61140161@163.com
参考文献:

[1]马为民, 蒲莹, 宫勋. 适应高比例新能源电源外送的特高压直流控制器 [J]. 电网技术, 2023, 47(3): 1262-1268.


 

Ma W M, Pu Y, Gong X. UHVDC current controller for high proportional new energy transmission [J]. Power System Technology, 2023, 47(3): 1262-1268.

 

[2]王元清, 廖小伟, 张子富, 等. 输电线铁塔钢材的低温力学和冲击韧性试验 [J]. 哈尔滨工业大学学报, 2015, 47(12): 70-74.

 

Wang Y Q, Liao X W, Zhang Z F, et al. Experimental study on mechanical properties and impact toughness of steel for transmission line towers at low temperatures [J]. Journal of Harbin Institute of Technology, 2015, 47(12): 70-74.

 

[3]张佳庆, 黄勇, 周亦夫, 等. 水喷雾作用下特高压换流变压器火灾上部空间温度研究 [J]. 高压电器, 2023, 59(10): 140-145.

 

Zhang J Q, Huang Y, Zhou Y F, et al. Study on temperature of upper space of UHVDC converter transformer fires under action of sprinklers [J]. High Voltage Apparatus, 2023, 59(10): 140-145.

 

[4]苟春梅,董静,崔丹丹.34CrNiMo6钢的高温流变行为及热加工图[J]. 锻压技术,2023,48(2):233-240.

 

Gou C M,Dong J, Cui D D. High temperature rheological behavior and thermal processing diagram for 34CrNiMo6 steel[J]. Forging & Stamping Technology, 2023,48(2):233-240.

 

[5]Zhang K, Zhang T H, Zhang M Y, et al. Hot deformation behavior, dynamic recrystallization mechanism and processing maps of Ti-V microalloyed high strength steel [J]. Journal of Materials Research and Technology, 2023, 25: 4201-4215.

 

[6]Zhao T, Rong S W, Hao X H, et al. Effect of Nb-V microalloying on hot deformation characteristics and microstructures of Fe-Mn-Al-C austenitic steel [J]. Materials Characterization, 2022, 183:111595.

 

[7]Zhou P W, Song Y R, Jiang H W, et al. Hot deformation behavior and processing maps of BG801 bearing steel [J]. Journal of Materials Research and Technology, 2022, 18: 3725-3738.

 

[8]Hu Y, Wang L H, Ouyang M H, et al. Hot deformation behaviors and dynamic softening mechanism of 6%Si high-silicon austenitic stainless steel [J]. Journal of Materials Research and Technology, 2023, 26: 4263-4281.

 

[9]Moon J, Park S J, Lee C H, et al. Influence of microstructure evolution on hot ductility behavior of austenitic Fe-Mn-Al-C lightweight steels during hot tensile deformation [J]. Materials Science and Engineering: A, 2023, 868:144786.

 

[10]Xu S G, He J S, Zhang R Z, et al. Hot deformation behaviors and dynamic softening mechanisms of 7Mo super-austenitic stainless steel with high stacking fault energy [J]. Journal of Materials Research and Technology, 2023, 23: 1738-1752.

 

[11]Wang Y Q, Shen Y F, Jia N, et al. Dynamic recrystallization and constitutive equation of 15Cr-10Mn-Ni-N steel under hot deformation [J]. Materials Today Communications, 2023, 35:105648.

 

[12]高志玉. 特厚板用HSLA钢的热变形行为与组织演变研究 [D].北京:北京科技大学, 2016.

 

Gao Z Y. Study on Hot Deformation Behavior and Microstructure Evolution of HSLA Ultra-heavy Plate Steel [D]. Beijing:University of Science and Technology Beijing, 2016.

 

[13]Montheillet F, Lurdos O, Damamme G. A grain scale approach for modeling steady-state discontinuous dynamic recrystallization [J]. Acta Materialia, 2009, 57(5): 1602-1612.

 

[14]张秀芝, 杨仁杰, 李佳, 等. 大型风电法兰用Q345E钢动态再结晶行为研究 [J]. 大型铸锻件, 2016, (1): 13-17.

 

Zhang X Z, Yang R J, Li J, et al. Research on dynamic recrystallization behavior of Q345E steel for heavy wind power flange [J]. Heavy Castings and Forgings, 2016, (1): 13-17.

 

[15]张健, 赵广辉, 王顺, 等. Q345钢的热加工性研究 [J]. 重型机械, 2020, (5): 70-74.

 

Zhang J, Zhao G H, Wang S, et al. Study on hot workability of Q345 steel [J]. Heavy Machinery, 2020, (5): 70-74.

 

[16]Song C N, Cao J G, Xiao J, et al. High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach [J]. Materials Today Communications, 2023, 34:105210.

 

[17]曹建国, 王天聪, 李洪波, 等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系 [J]. 机械工程学报, 2016, 52(4): 90-96,102.

 

Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model [J]. Journal of Mechanical Engineering,2016, 52(4): 90-96,102.

 

[18]白杰, 霍元明, 何涛, 等. 基于GA-Arrhenius本构模型的EA4T钢高温变形行为 [J]. 锻压技术, 2022, 47(11): 246-253.

 

Bai J, Huo Y M, He T, et al. High-temperature deformation behavior for EA4T steel based on GA-Arrhenius constitutive model [J].Forging & Stamping Technology, 2022, 47(11): 246-253.

 

[19]谭毅, 杨书仪, 孙要兵, 等. ZL114A铝合金本构关系与失效准则参数的确定 [J]. 爆炸与冲击, 2024,44(1):013104.

 

Tan Y, Yang S Y, Sun Y B, et al. Determination of constitutive relation and fracture criterion parameters for ZL114A aluminum alloy [J]. Explosion and Shock Waves, 2024,44(1): 013104.

 

[20]杨东, 姜紫薇, 郑志军. 高温高应变率下钛合金Ti6Al4V的动态力学行为及本构关系 [J].高压物理学报,2024,38(1):77-87.

 

Yang D, Jiang Z W, Zheng Z J. Dynamic behavior and constitutive relationship of titanium alloy Ti6Al4V under high temperature and high strain rate [J]. Chinese Journal of High Pressure Physics,2024,38(1):77-87.

 

[21]毛欢, 韩莹莹. 基于应变补偿Arrhenius模型的TC20钛合金本构方程研究 [J]. 铸造技术, 2018, 39(9): 1939-1942,1947.

 

Mao H, Han Y Y. Study on constitutive equations of TC20 alloy based on strain-compensated Arrhenius model [J]. Foundry Technology, 2018, 39(9): 1939-1942,1947.

 

[22]王蕾, 白冰, 王立军, 等. Q345R钢的热变形特性及组织演化规律研究 [J]. 热加工工艺, 2013, 42(1): 8-11.

 

Wang L, Bai B, Wang L J, et al. Investigation on hot deformation behaviors and microstructure characteristics for Q345R steel [J]. Hot Working Technology, 2013, 42(1): 8-11.

 

[23]Hui W J, Yu T R, Su S H, et al. Behavior in spheroidizing annealing and mechanical properties of medium carbon steel [J]. Iron and Steel, 2005,40(9):60-64.

 

[24]Sun J X, Zhang L, Huang Y F, et al. Strain hardening rate and strain rate sensitivity behavior of bcc/fcc-dual-phase tungsten heavy alloy [J]. International Journal of Refractory Metals and Hard Materials, 2023, 116: 106363.

 

[25]Mao W Q, Gao S, Gong W, et al. Quantitatively evaluating respective contribution of austenite and deformation-induced martensite to flow stress, plastic strain, and strain hardening rate in tensile deformed TRIP steel [J]. Acta Materialia, 2023, 256: 119139.

 

[26]Cao R Z, Wang W, Ma S B, et al. Arrhenius constitutive model and dynamic recrystallization behavior of 18CrNiMo7-6 steel [J]. Journal of Materials Research and Technology, 2023, 24: 6334-6347.

 

[27]Li F, Zhu C C, Li S J, et al. A comparative study on modified and optimized Zerilli-Armstrong and arrhenius-type constitutive models to predict the hot deformation behavior in 30Si2MnCrMoVE steel [J]. Journal of Materials Research and Technology, 2022, 20: 3918-3929.

 

[28]He A, Wang X T, Xie G L, et al. Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation [J]. Journal of Iron and Steel Research International, 2015, 22(8): 721-729.

 

[29]Li H Y, Li Y H, Wang X F, et al. A comparative study on modified Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel [J]. Materials & Design, 2013, 49: 493-501.

 

[30]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22-32.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9