[1]马为民, 蒲莹, 宫勋. 适应高比例新能源电源外送的特高压直流控制器 [J]. 电网技术, 2023, 47(3): 1262-1268.
Ma W M, Pu Y, Gong X. UHVDC current controller for high proportional new energy transmission [J]. Power System Technology, 2023, 47(3): 1262-1268.
[2]王元清, 廖小伟, 张子富, 等. 输电线铁塔钢材的低温力学和冲击韧性试验 [J]. 哈尔滨工业大学学报, 2015, 47(12): 70-74.
Wang Y Q, Liao X W, Zhang Z F, et al. Experimental study on mechanical properties and impact toughness of steel for transmission line towers at low temperatures [J]. Journal of Harbin Institute of Technology, 2015, 47(12): 70-74.
[3]张佳庆, 黄勇, 周亦夫, 等. 水喷雾作用下特高压换流变压器火灾上部空间温度研究 [J]. 高压电器, 2023, 59(10): 140-145.
Zhang J Q, Huang Y, Zhou Y F, et al. Study on temperature of upper space of UHVDC converter transformer fires under action of sprinklers [J]. High Voltage Apparatus, 2023, 59(10): 140-145.
[4]苟春梅,董静,崔丹丹.34CrNiMo6钢的高温流变行为及热加工图[J]. 锻压技术,2023,48(2):233-240.
Gou C M,Dong J, Cui D D. High temperature rheological behavior and thermal processing diagram for 34CrNiMo6 steel[J]. Forging & Stamping Technology, 2023,48(2):233-240.
[5]Zhang K, Zhang T H, Zhang M Y, et al. Hot deformation behavior, dynamic recrystallization mechanism and processing maps of Ti-V microalloyed high strength steel [J]. Journal of Materials Research and Technology, 2023, 25: 4201-4215.
[6]Zhao T, Rong S W, Hao X H, et al. Effect of Nb-V microalloying on hot deformation characteristics and microstructures of Fe-Mn-Al-C austenitic steel [J]. Materials Characterization, 2022, 183:111595.
[7]Zhou P W, Song Y R, Jiang H W, et al. Hot deformation behavior and processing maps of BG801 bearing steel [J]. Journal of Materials Research and Technology, 2022, 18: 3725-3738.
[8]Hu Y, Wang L H, Ouyang M H, et al. Hot deformation behaviors and dynamic softening mechanism of 6%Si high-silicon austenitic stainless steel [J]. Journal of Materials Research and Technology, 2023, 26: 4263-4281.
[9]Moon J, Park S J, Lee C H, et al. Influence of microstructure evolution on hot ductility behavior of austenitic Fe-Mn-Al-C lightweight steels during hot tensile deformation [J]. Materials Science and Engineering: A, 2023, 868:144786.
[10]Xu S G, He J S, Zhang R Z, et al. Hot deformation behaviors and dynamic softening mechanisms of 7Mo super-austenitic stainless steel with high stacking fault energy [J]. Journal of Materials Research and Technology, 2023, 23: 1738-1752.
[11]Wang Y Q, Shen Y F, Jia N, et al. Dynamic recrystallization and constitutive equation of 15Cr-10Mn-Ni-N steel under hot deformation [J]. Materials Today Communications, 2023, 35:105648.
[12]高志玉. 特厚板用HSLA钢的热变形行为与组织演变研究 [D].北京:北京科技大学, 2016.
Gao Z Y. Study on Hot Deformation Behavior and Microstructure Evolution of HSLA Ultra-heavy Plate Steel [D]. Beijing:University of Science and Technology Beijing, 2016.
[13]Montheillet F, Lurdos O, Damamme G. A grain scale approach for modeling steady-state discontinuous dynamic recrystallization [J]. Acta Materialia, 2009, 57(5): 1602-1612.
[14]张秀芝, 杨仁杰, 李佳, 等. 大型风电法兰用Q345E钢动态再结晶行为研究 [J]. 大型铸锻件, 2016, (1): 13-17.
Zhang X Z, Yang R J, Li J, et al. Research on dynamic recrystallization behavior of Q345E steel for heavy wind power flange [J]. Heavy Castings and Forgings, 2016, (1): 13-17.
[15]张健, 赵广辉, 王顺, 等. Q345钢的热加工性研究 [J]. 重型机械, 2020, (5): 70-74.
Zhang J, Zhao G H, Wang S, et al. Study on hot workability of Q345 steel [J]. Heavy Machinery, 2020, (5): 70-74.
[16]Song C N, Cao J G, Xiao J, et al. High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach [J]. Materials Today Communications, 2023, 34:105210.
[17]曹建国, 王天聪, 李洪波, 等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系 [J]. 机械工程学报, 2016, 52(4): 90-96,102.
Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model [J]. Journal of Mechanical Engineering,2016, 52(4): 90-96,102.
[18]白杰, 霍元明, 何涛, 等. 基于GA-Arrhenius本构模型的EA4T钢高温变形行为 [J]. 锻压技术, 2022, 47(11): 246-253.
Bai J, Huo Y M, He T, et al. High-temperature deformation behavior for EA4T steel based on GA-Arrhenius constitutive model [J].Forging & Stamping Technology, 2022, 47(11): 246-253.
[19]谭毅, 杨书仪, 孙要兵, 等. ZL114A铝合金本构关系与失效准则参数的确定 [J]. 爆炸与冲击, 2024,44(1):013104.
Tan Y, Yang S Y, Sun Y B, et al. Determination of constitutive relation and fracture criterion parameters for ZL114A aluminum alloy [J]. Explosion and Shock Waves, 2024,44(1): 013104.
[20]杨东, 姜紫薇, 郑志军. 高温高应变率下钛合金Ti6Al4V的动态力学行为及本构关系 [J].高压物理学报,2024,38(1):77-87.
Yang D, Jiang Z W, Zheng Z J. Dynamic behavior and constitutive relationship of titanium alloy Ti6Al4V under high temperature and high strain rate [J]. Chinese Journal of High Pressure Physics,2024,38(1):77-87.
[21]毛欢, 韩莹莹. 基于应变补偿Arrhenius模型的TC20钛合金本构方程研究 [J]. 铸造技术, 2018, 39(9): 1939-1942,1947.
Mao H, Han Y Y. Study on constitutive equations of TC20 alloy based on strain-compensated Arrhenius model [J]. Foundry Technology, 2018, 39(9): 1939-1942,1947.
[22]王蕾, 白冰, 王立军, 等. Q345R钢的热变形特性及组织演化规律研究 [J]. 热加工工艺, 2013, 42(1): 8-11.
Wang L, Bai B, Wang L J, et al. Investigation on hot deformation behaviors and microstructure characteristics for Q345R steel [J]. Hot Working Technology, 2013, 42(1): 8-11.
[23]Hui W J, Yu T R, Su S H, et al. Behavior in spheroidizing annealing and mechanical properties of medium carbon steel [J]. Iron and Steel, 2005,40(9):60-64.
[24]Sun J X, Zhang L, Huang Y F, et al. Strain hardening rate and strain rate sensitivity behavior of bcc/fcc-dual-phase tungsten heavy alloy [J]. International Journal of Refractory Metals and Hard Materials, 2023, 116: 106363.
[25]Mao W Q, Gao S, Gong W, et al. Quantitatively evaluating respective contribution of austenite and deformation-induced martensite to flow stress, plastic strain, and strain hardening rate in tensile deformed TRIP steel [J]. Acta Materialia, 2023, 256: 119139.
[26]Cao R Z, Wang W, Ma S B, et al. Arrhenius constitutive model and dynamic recrystallization behavior of 18CrNiMo7-6 steel [J]. Journal of Materials Research and Technology, 2023, 24: 6334-6347.
[27]Li F, Zhu C C, Li S J, et al. A comparative study on modified and optimized Zerilli-Armstrong and arrhenius-type constitutive models to predict the hot deformation behavior in 30Si2MnCrMoVE steel [J]. Journal of Materials Research and Technology, 2022, 20: 3918-3929.
[28]He A, Wang X T, Xie G L, et al. Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation [J]. Journal of Iron and Steel Research International, 2015, 22(8): 721-729.
[29]Li H Y, Li Y H, Wang X F, et al. A comparative study on modified Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel [J]. Materials & Design, 2013, 49: 493-501.
[30]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22-32.
|