网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Deform-3D钛合金模锻件成形的仿真分析
英文标题:Simulation analysis on forming for titanium alloy die forgings based on Deform-3D
作者:王博 岳战国 王亚安 边颖帅 何正文 
单位:西安航空制动科技有限公司 
关键词:TC11钛合金 筒形模锻件 金属流向 锻造火次 折叠 裂纹 
分类号:TG319
出版年,卷(期):页码:2024,49(4):35-40
摘要:

 采用10000 t液压机制备了钛合金筒形模锻件毛坯,基于Deform-3D软件对其成形过程中出现的局部严重折叠及裂纹问题进行了仿真分析,同时提出优化坯料结构和增加锻造火次两种解决措施并进行了工艺验证,通过拉伸试样和冲击试样检测了锻件的室温、高温力学性能,采用光学显微镜分析了锻件的显微组织。结果表明:钛合金模锻成形过程中,金属流线、温度场分布以及等效应变量的异常,导致锻件局部存在折叠、裂纹的风险。而通过优化坯料结构和增加锻造火次,有效控制了锻件成形中的金属流线方向和温度场分布,从而提高了钛合金在局部位置的成形极限,避免在成形过程中出现折叠以及裂纹缺陷,保证了产品质量,且产品性能满足要求,进而提高了生产效率。

 The cylindrical die forgings billet of titanium alloy was prepared by 10000 t hydraulic press, and based on Deform-3D software, the serious local folding and cracking problems occured in the forming process were simulated and analysed. Then, two solutions of billet structure optimization and forging fire increase were proposed, and the process verification was carried out. Furthermore, the mechanical properties at room temperature and high temperature of forgings were detected by tensile and impact samples, and the microstructure of forgings was analysed by optical microscope. The results show that during the die forging process of titanium alloy, the metal streamline, temperature field distribution and equivalent strain variables are abnormal, which resulting in the risk of folding and cracking in local positions of forgings. By optimizing the billet structure and increasing the forging fire, the distributions of metal streamline direction and temperature field in forging are effectively controlled to improve the forming limit of titanium alloy in local positions, avoid folding and cracking defects in the forming process and ensure the product quality, and the performances of product meet the requirements to improve the production efficiency.

基金项目:
作者简介:
作者简介:王博(1995-),男,硕士,工程师 E-mail:447641988@qq.com 通信作者:岳战国(1986-),男,硕士,高级工程师 E-mail:784244507@qq.com
参考文献:

 [1]张晨辉, 张利军, 郑筠, 等. 钛合金组织与性能调控工程实例[J]. 特种铸造及有色合金, 2021, 41(8): 1020-1023.


 

Zhang C H, Zhang L J, Zheng Y, et al. An engineering example of microstructure and properties control of titanium alloy [J]. Special Casting & Nonferrous Alloys, 2021, 41(8): 1020-1023.

 

[2]王向明, 刘文珽. 飞机钛合金结构设计与应用[M]. 北京:国防工业出版社, 2010. 

 

Wang X M, Liu W T. Aircraft Titanium Alloy Structure Design and Application [M]. Beijing: National Defense Industry Press, 2010.

 

[3]赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理[M]. 长沙:中南大学出版社, 2012.

 

Zhao Y Q, Chen Y N, Zhang X M, et al. Phase Transformatiom and Heat Treatment of Titanium Alloys [M]. Changsha: Central South University Press, 2012.

 

[4]童晋方, 冯治国, 江玉莲, 等. TB9钛合金芯杆冷镦成形模拟及实验研究[J]. 锻压技术, 2023, 48(8): 32-40.

 

Tong J F, Feng Z G, Jiang Y L, et al. Simulation and experiment study on cold heading for TB9 titanium alloy core rod[J]. Forging & Stamping Technology, 2023, 48(8): 32-40.

 

[5]黄伟, 古忠涛, 陈薄, 等. TC4钛合金连接板抽芯铆接数值模拟[J]. 锻压技术, 2023, 48(11): 95-103. 

 

Huang W, Gu Z T, Chen B, et al. Numerical simulation on core riveting for TC4 titanium alloy connecting plate [J]. Forging & Stamping Technology, 2023, 48(11): 95-103.

 

[6]赵满圆, 闫晓东, 贺金宇, 等. GH4169双层管填充绕弯畸变的数值模拟研究[J]. 稀有金属, 2023, 47(7): 967-976.

Zhao M Y, Yan X D, He J Y, et al. Numerical simulation on bending distortion of GH4169 doublelayer filled tube [J]. Chinese Journal of Rare Metals, 2023, 47(7): 967-976.

 

[7]GJB 2218A—2018, 航空用钛及钛合金棒材和锻坯规范[S].

 

GJB 2218A—2018, Specification of titanium and titanium alloy bars and forging stocks for aircraft [S].

 

[8]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

 

[9]GB/T 228.2—2015, 金属材料拉伸试验第2部分:高温试验方法[S].

 

GB/T 228.2—2015, Metallic materials—Tensile testing—Part 2:Method of test at elevated temperature [S].

 

[10]GB/T 229—2020, 金属材料夏比摆锤冲击试验方法[S].

 

GB/T 229—2020, Metallic materials—Charpy pendulum impact test method [S].

 

[11]中国机械工程学会. 锻压手册:锻造 第1卷[M]. 3版.北京:机械工业出版社, 2007.

 

Chinese Mechanical Engineering Society. Forging Handbook:Forging Volume 1 [M]. 3rd Edition.Beijing:China Machine Press, 2007.

 

[12]GB/T 23605—2020, 钛合金β转变温度测定方法[S].

 

GB/T 23605—2020, Determination of β transus temperature of titanium alloys [S].

 

[13]GB/T 38964—2020, 钛合金等温锻造工艺规范[S].

 

GB/T 38964—2020, Isothermal forging for titanium alloy—Technological specification [S].

 

[14]HB/Z 199—2005, 钛合金锻造工艺[S].

 

HB/Z 199—2005, Forging techniques of titanium alloy [S].

 

[15]张智, 杨佩, 文娜, 等. TC11钛合金棒材锻造工艺的研究[J]. 热加工工艺, 2017, 46(15): 163-172.

 

Zhang Z, Yang P, Wen N, et al. Study on forging process of TC11 titanium alloy bar [J]. Hot Working Technology, 2017, 46(15): 163-172. 

 

[16]王巧云, 张耀虎. 大型钛合金锻件的研制[J]. 西安航空学院学报, 2002, 20(3): 60-62.

 

Wang Q Y, Zhang Y H. Study of new material TC4 forging [J]. Journal of Xi′an Aerotechnical College, 2002, 20(3): 60-62.

 

[17]GJB 2744A—2019, 航空用钛及钛合金自由锻件和模锻件规范[S].

 

GJB 2744A—2019, Specification for titanium and titanium alloy forgings for aerospace [S]. 

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9