[1]Watanabe T. An approach to grain boundary design for strong and ductile polycrystals[J]. Res Mechanica, 1984, 11(1): 47-84.
[2]Tokita S, Kokawa H, Sato Y S, et al. In situ EBSD observation of grain boundary character distribution evolution during thermome
-chanical process used for grain boundary engineering of 304 austenitic stainless steel[J]. Materials Characterization, 2017, 131: 31-38.
[3]Chen K W, Li H, Lim C H, et al. Fine grains within narrow temperature range by tuning strain-induced boundary migration dominated recrystallization for selective laser melted Inconel 718[J]. Scripta Materialia, 2022, 219: 114882.
[4]Hui J, Liu W G, Wang B. Quasi-gradient variation of microstruc-
tures and properties of Cu-Sn alloy along the thickness direction under cold spinning[J]. Journal of Alloys and Compounds, 2020, 831: 154701.
[5]Shimada M, Kokama H, Wang Z J. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Materialia, 2002, 50(9): 2331-2341.
[6]Xia S, Zhou B X, Chen W J. Effect of single-step strain and annealing on grain boundary character distribution and intergranular corrosion in alloy 690[J]. Journal of Materials Science, 2007, 43(9): 2990-3000.
[7]Watanabe T, Tsurekawa S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering[J]. Acta Materialia, 1999, 47(15): 4171-4185.
[8]Jérémie G, Beguin J D, Alexis J, et al. Influence of Yb: YAG laser beam parameters on Haynes 188 weld fusion zone microstructure and mechanical properties[J]. Metallurgical and Materials Transactions B, 2017, 48(4):1-10.
[9]高亚伟, 董建新, 姚志浩, 等. GH5188 高温合金组织特征及冷热加工过程组织演变[J].稀有金属材料与工程,2017,46(10):2922-2928.
Gao Y W, Dong J X, Yao Z H, et al. Microstructure characteristics and microstructure evolution during hot and cold working process of GH5188 superalloy[J]. Rare Metal Materials and Engineering, 2017,46(10):2922-2928.
[10]Wu Y, Sun B B, Chen B Q, et al. Cracking mechanism of GH5188 alloy during laser powder bed fusion additive manufacturing[J]. Materials Characterization, 2024, 207: 113548.
[11]Yan Z, Trofimov V, Song C, et al. Microstructure and mechanical properties of GH5188 superalloy additively manufactured via ultrasonic-assisted laser powder bed fusion[J]. Journal of Alloys and Compounds, 2023, 939: 168771.
[12]Wei W, Xiao J C, Wang C F, et al. Hierarchical microstructure and enhanced mechanical properties of SLM-fabricated GH5188 Co-superalloy[J]. Materials Science and Engineering: A, 2022, 831: 142276.
[13]Liu D H, Chen J D, Chai H R, et al. Study of meta-dynamic recrystallization behavior of GH5188 superalloy[J]. Journal of Materials Research and Technology, 2021, 15: 1179-1189.
[14]Liu D H, Chai H R, Yang L, et al. Study on the dynamic recrystallization mechanisms of GH5188 superalloy during hot compression deformation[J]. Journal of Alloys and Compounds, 2022, 895: 162565.
[15]Wang X, Luo G Q, Sun Y, et al. Effect of strain rate and high temperature on quasi-static and dynamic compressive behavior of forged GH5188 superalloy[J]. Materials Science and Engineering: A, 2023, 886: 145391.
[16]王卫国,周邦新,冯柳,等.冷轧变形Pb-Ca-Sn-Al合金在回复和再结晶过程中的晶界特征分布[J].金属学报,2006,42(7):715-721.
Wang W G, Zhou B X, Feng L, et al. Grain boundary character distributions (GBCD) of cold-rolled Pb-Ca-Sn-Al alloy during recovery and recrystallization[J]. Acta Metallurgica Sinica, 2006, 42(7): 715-721.
[17]刘峰, 康进科, 马聪,等.形变量对GH4169合金微观组织和晶界特征分布的影响[J].金属热处理,2017,42(2):11-15.
Liu F, Kang J K, Ma C, et al. Effect of deformation on microstructure and grain boundary character distribution of GH4169 alloy[J]. Heat Treatment of Metals, 2017, 42(2): 11-15.