网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
沙柳和香菇菌渣混配成型过程中的力链演变
英文标题:Evolution on force chain in mixing and forming process of Salix and mushroom residue
作者:李震 赵召才 陶鑫 岳强 
单位:内蒙古科技大学 机械工程学院 
关键词:沙柳颗粒 香菇菌渣颗粒 混配料 力链 孔隙率 
分类号:TK6
出版年,卷(期):页码:2024,49(4):161-168
摘要:

 为了分析沙柳和香菇菌渣混配成型过程中的力链演变过程,在实际压缩试验的基础上,建立沙柳颗粒和混配料颗粒的离散元仿真模型。结果表明:沙柳颗粒和混配料颗粒在压缩过程中,轴向各层颗粒的最大平均压缩力差值分别为17.21和6.61 N,轴向上的强力链分布均经历了先由下向上再由上向下的传递过程。在压缩完成时刻,沙柳颗粒成型块内强接触分布从上至下逐渐减小,强接触占比为34.52%;混配料颗粒成型块内强接触分布均匀,强接触占比为36.14%;沙柳颗粒成型块和混配料颗成型块的轴向各层颗粒最大孔隙率差值分别为14.1%和6.36%。研究表明,沙柳和香菇菌渣混配成型改善了成型块内压力的传递,增加了颗粒与颗粒之间的接触面积,提高了成型块的强度和稳定性。

  In order to analyze the evolution process of force chain in the mixing and forming process for Salix and mushroom residue, a discrete element simulation model of Salix particles and mixed ingredient particles was established on the basis of actual compression test. The results show that during the compression process of Salix particles and mixed ingredient particles, the maximum average compressive force difference values of particles on each layer in the axial direction are 17.21 and 6.61 N, respectively. And the distribution of strength force chain in the axial direction experiences the transfer process from bottom to top and then from top to bottom. At the time of compression completion, the strong contact distribution in the formed block of Salix particles gradually decreases from top to bottom, the proportion of strong contact is 34.52%, while the strong contact distribution in the formed block of mixed ingredients particles is uniform, the proportion of strong contact is 36.14%. The maximum difference values of particles on each layer in the axial direction for the Salix particle formed block and the mixed ingredient particle formed block are 14.1% and 6.36%, respectively. The research shows that the mixing and forming of Salix and mushroom residue improves the pressure transfer in the formed block, increases the contact area between particles, and improves the strength and stability of the formed block.

基金项目:
国家自然科学基金资助项目(52366018);内蒙古自治区鄂尔多斯科技局项目(YF20232302)
作者简介:
作者简介:李震(1973-),男,博士,教授 E-mail:lizhen_730106@126.com 通信作者:赵召才(1996-),男,硕士研究生 E-mail:3232656062@qq.com
参考文献:

 [1]李震,沙潜毅,李金达,等.沙柳颗粒在不同破碎程度下致密成型的拱效应[J].锻压技术,2023,48(2):111-117.


 

 Li Z, Sha Q Y, Li J D, et al. Arch effect for Salix granules dense forming under different breakage degrees[J]. Forging & Stamping Technology, 2023,48(2):111-117.

 

[2]沈鸿翔. 饲草嵌套式环模压块机模套的优化设计与试验研究[D]. 北京:中国农业大学,2018.

 

Shen H X. Optimization Design and Experiment Study on the Die Sleeves of the Nested Ringdie Structure of Forage Briquetting Machine[D]. Beijing: China Agricultural University, 2018.

 

[3]于世伟,周剑,张炜,等. 粉末高速压制成形件密度影响因素分析[J]. 中国机械工程,2018,29(9):1120-1126. 

 

Yu S W, Zhou J, Zhang W, et al. Analysis of influence factors for density of compressed powder products during high velocity compaction[J]. China Mechanical Engineering, 2018, 29(9): 1120-1126.

 

[4]孟凡净,刘华博,花少震,等. 金属粉末单轴压制过程中的摩擦机制及力学特性分析[J]. 应用力学学报,2021,38(3):1286-1292. 

 

Meng F J, Liu H B, Hua S Z, et al. Analysis of frictional mechanism and mechanical characteristics of metal powder in the process of uniaxial pressing[J]. Chinese Journal of Applied Mechanics, 2021, 38(3): 1286-1292.

 

[5]Xin X F, Wang X F, Lei Z W, et al. Simulation study of singlechannel closed cold compression molding for straw biomass[J]. Journal of Biobassed Materials and Bioenergy, 2019, 13(3): 329-337.

 

[6]孙启新,陈书法,董玉平. 秸秆类生物质成型热黏塑性本构模型构建[J]. 农业工程学报,2015,31(8):221-226. 

 

Sun Q X, Chen S F, Dong Y P. Establishment of thermo viscoplastic constitutive model for straw biomass briquetting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8): 221-226.

 

[7]Yin Y T, Wang L Y, Cai J J. Study on influence factors to the biomass compression process[J]. Applied Mechanics & Materials, 2011, 71-78: 2939-2943.

 

[8]孙其诚,金峰,王光谦,等. 二维颗粒体系单轴压缩形成的力链结构[J]. 物理学报,2010,59(1):30-37. 

 

Sun Q C, Jin F, Wang G Q, et al. Force chains in a uniaxially compressed static granular matter in 2D[J]. Acta Physica Sinica, 2010, 59(1): 30-37. 

 

[9]Meng F J, Liu H B, Hua S E, et al. Force chain characteristics of dense particles sheared between parallelplate friction system[J]. Results in Physics, 2021, 25: 104328-104339.

 

[10]Xu Z Y, Meng F J. Investigation of the flow and force chain characteristics of metal powder in high- velocity compaction based on a discrete element method[J].Journal of the Korean Physical Society, 2021, 79(5): 455-467.

 

[11]张炜, 萧伟健, 袁传牛, 等. 离散元法铁粉末压制中粒径分布对力链演化机制的影响[J]. 力学学报, 2022, 54(9): 2489-2500.

 

Zhang W, Xiao W J, Yuan C N,et al.Effect of particle size distribution on force chain evolution mechanism in iron powder compaction by discrete element method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022,54(9): 2489-2500.

 

[12]李震,高雨航,刘彭,等. 沙柳细枝颗粒致密成型过程中力链演变的离散元研究[J]. 太阳能学报,2019,40(11): 3186-3195.

 

Li Z, Gao Y H, Liu P, et al. Discrete element study on evolution of forcechain during Salix grains dense molding[J]. Acta Energiae Solaris Sinica, 2019, 40(11): 3186-3195. 

 

[13]杜海君,雷霆,张永安,等.苜蓿振动压缩成型过程中的力链演变[J].农业工程学报,2022,38(2):33-40.

 

Du H J, Lei T, Zhang Y A, et al. Evolution of force chain during vibration compression molding of alfalfa[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022,38(2):33-40.

 

[14]冯启飞. 基于离散元理论的旋回破碎机性能分析及腔型优化[D]. 长沙:湖南大学,2014.

 

Feng Q F. The Crushing Performance Analysis and Chamber Optimization of Qyratory Crusher Based on the Diacrete Element Method[D]. Changsha: Hunan University, 2014. 

 

[15]Thakur S C, Morrissey J P, Sun J, et al. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elastoplastic contact model[J]. Granular Matter, 2014, 16(3): 383-400. 

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9