网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
闭式双点框架式机械压力机机身结构的拓扑-几何优化设计
英文标题:Topology-geometry optimization design on frame structure for closed double-point frame mechanical press
作者:颜健1 2 张兆华3 郭洪昌3 王达3 梅碧舟3  
单位:1.天津大学 机械工程学院 2.湖南科技大学 机电工程学院  3.浙江易锻精密机械有限公司 
关键词:闭式压力机 拓扑优化 几何优化 服役精度 轻量化设计 
分类号:TH122;TG315.5
出版年,卷(期):页码:2024,49(4):169-177
摘要:

 以APE400闭式双点整体框架式压力机为对象,针对质量占比大且承载关键的机身底座和立柱,开展面向制造的机身结构拓扑-几何参数优化研究。分析了原压力机机身结构的静力学性能,明确了下模具与底座固定和滑动摩擦接触两种连接方式对其变形的影响,后者台面变形要大于前者,采用滑动摩擦接触模拟验证机身结构更为保守且更贴近实际。而后,采用变密度拓扑优化方法,分别获得了支撑模具的底座、机身侧立柱的材料拓扑构成,并根据实际板焊接制造工艺,建立了机身新型结构的参数化模型。最后,采用响应面优化方法进行几何参数寻优,对比了优化模型与原机型的性能指标。结果表明,当模具上台面变形差值在0.19 mm时能实现减重3130 kg,而与原机型的变形差值相同(0.26 mm)时能减重3803 kg,减重比达到18.46%,结构轻量化效果非常显著。

 For APE400 closed double-point integral frame press, the topology-geometry parameter optimization study of the frame structure for manufacturing was carried out,aiming at the critical load-bearing frame base and column with large mass proportion. Then, the static mechanical properties of the original press frame structure were analyzed, and the influences of the two connection methods of fixed lower die and base and sliding friction contact on its deformation were conformed. Because the table surface deformation of latter was larger than that of former, the frame structure verified by sliding friction contact simulation was more conservative and closer to the reality. Furthermore, the material topology composition of the base supporting the die and the side columns of frame was obtained respectively by a variable density topology optimization method, and the parametric model of the new frame structure was established according to the actual plate welding manufacturing process. Finally, the geometric parameter optimization was conducted by the response surface optimization method, and the performance indexes of the optimized model and the original model were compared. The results show that the weight reduction of 3130 kg can be achieved when the deformation difference of the upper table surface for the die is 0.19 mm, and the weight reduction of 3803 kg can be achieved when the deformation difference is 0.26 mm which is the same as that of the original model, and the weight reduction ratio reaches 18.46%, which is a remarkable effect for the structural lightweight.

基金项目:
宁波市重点研发计划暨“揭榜挂帅”项目(2022Z035)
作者简介:
作者简介:颜健(1988-),男,博士后,副教授,博士生导师 E-mail:yanjian1988@hnust.edu.cn
参考文献:

 [1]闵鹏,闵建成.高速精密冲压技术发展研究[J].锻压装备与制造技术,2020,55(6):108-117.


 

Min P, Min J C. Research on the development of high speed precision stamping technology[J].China Metalforming Equipment & Manufacturing Technology,2020,55(6):108-117.

 

[2]管爱春.高速精密压力机在电动汽车行业的应用与发展[J].锻造与冲压,2022,(16):18-21.

 

Guan A C. Application and development of highspeed precision press in the electric vehicle industry[J]. Forging & Metalforming,2022,(16):18-21.

 

[3]Zhao X H, Liu Y X, Hua L, et al. Finite element analysis and topology optimization of a 12000 kN fine blanking press frame[J]. Structural & Multidisciplinary Optimization, 2016, 54(2):375-389.

 

[4]Xu D K, Chen J, Tang Y C, et al. Topology optimization of die weight reduction for highstrength sheet metal stamping[J]. International Journal of Mechanical Sciences, 2012, 59(1): 73-82.

 

[5]谭群燕,沈铖,丁明明,等.基于最优拓扑概念构型的压力机机身精度优化[J].锻压技术,2023,48(4):186-192.

 

Tan Q Y, Shen C,Ding M M, et al. Precision optimization on press body based on optimal topological conceptual configuration[J].Forging & Stamping Technology,2023,48(4):186-192.

 

 

[6]王俊,刘祥,庞秋,等.伺服机械压力机机身结构优化设计分析[J].精密成形工程,2022,14(7):136-142.

 

Wang J, Liu X, Pang Q, et al. Optimization design and analysis of servo mechanical press frame structure[J].Journal of Netshape Forming Engineering,2022,14(7):136-142.

 

[7]Li C, Kim I Y, Jeswiet J. Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization[J]. Structural and Multidisciplinary Optimization, 2015, 51: 547-564.

 

[8]Lan J, Hu J, Song C, et al. Modeling and optimization of a 10000 kN fine blanking press frame[A]. 2011 International Conference on Remote Sensing, Environment and Transportation Engineering[C].Nanjing: IEEE, 2011.

 

[9]徐双,赵至友,赵国勇,等. 重型电动数控螺旋压力机结构设计与有限元分析 [J]. 锻压技术, 2022, 47 (6): 193-198.

 

Xu S,Zhao Z Y,Zhao G Y, et al. Structure design and finite element analysis on heavy duty electric CNC screw press[J].Forging & Stamping Technology, 2022, 47 (6): 193-198.

 

[10]徐双,赵至友,赵国勇,等. 基于多项式拟合算法的重型电动数控螺旋压力机机身的轻量化[J].锻压技术,2022,47(12):154-160.

 

Xu S, Zhao Z Y, Zhao G Y, et al. Lightweight on heavyduty electric CNC screw press body based on polynomial fitting algorithm[J].Forging & Stamping Technology,2022,47(12):154-160.

 

[11]Jiao M, Guo X H, Wan D D. Finite element analysis and lightweight research on the bed of a large machine tool based on HyperWorks[J]. Applied Mechanics and Materials, 2012, 121: 3294-3298.

 

[12]王宏伟,梁伟立,杨莎,等. 6300 kN伺服直驱螺旋压力机整体机身结构优化分析[J].机械设计,2023, 40(S1): 134-138.

 

Wang H W, Liang W L, Yang S,et al. Optimization analysis of the integral fuselage structure of 6300 kN servo direct drive screw press[J].Journal of Machine Design,2023, 40(S1): 134-138.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9